Transfer properties and partition coefficients for individual ions are relevant in a variety of scientific and engineering contexts, such as predicting the effects of different electrolytes on biomacromolecules in a preferential interaction sense or predicting the distribution of heavy metal ions in soils, rivers, etc. Computer simulations allow free energies of transfer to be estimated by considering single ions explicitly. When the two media under consideration are similar to each other regarding ion solvation, the resultant free energies are small in absolute magnitude. In these cases, it is advisable to simulate the transfer process directly. Here, we demonstrate how this can be achieved using two-dimensional umbrella sampling in conjunction with canonical ensemble molecular dynamics simulations where two liquid media are in direct contact. By calculating full two-dimensional potentials of mean force, these simulations allow the estimation of single-ion transfer free energies by integrating this surface accordingly. We report statistical accuracies to highlight that very high precision is achieved and needed to make even just qualitative statements about the transfer process. We close by discussing implications of our results for the specific case considered: the transfer of polypeptide side chain analogs from water to aqueous denaturant solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp05331f | DOI Listing |
Microb Cell Fact
January 2025
Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt.
Background: Because the process is cost-effective, microbial pectinase is used in juice clearing. The isolation, immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Molecular Biology Department, Biotechnology Research Institute, National Research Center, El-Buhouth St. 33, Dokki, P.O.12622, Giza, Egypt.
Background: Actinomycetes are a well-known example of a microbiological origin that may generate a wide variety of chemical structures. As excellent cell factories, these sources are able to manufacture medicines, agrochemicals, and enzymes that are crucial.
Results: In this study, about 34 randomly selected Streptomyces isolates were discovered in soil, sediment, sea water, and other environments.
J Phys Chem A
January 2025
Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.
Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, WI, 53706, USA.
Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, KAIST, Daejeon, Republic of Korea.
Despite its profound significance, the molecular structural changes near the transition state, driven by the vibronic coupling, have remained largely unexplored, leaving a crucial aspect of chemical reactions shrouded in uncertainty. Herein, the dynamical behavior of the reactive flux on the verge of chemical bond breakage was revealed through the spectroscopic characterization of a large amplitude vibrational motion. Highly excited internal rotor states of S methylamine (CHND) report on the structural change as the molecule approaches the transition state, indicating that the quasi-free internal rotation is strongly coupled to the reaction coordinate as their energies near the maximum of the reaction barrier for the N-D chemical bond predissociation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!