A novel QTL for FHB resistance was mapped on wheat 7DL, being effective in multiple genetic backgrounds and environments, and comparable to Fhb1 in effect magnitude. Fusarium head blight (FHB) is one of the major fungal diseases affecting wheat production in many countries. The wheat line AQ24788-83 (AQ) possesses FHB resistance. The American wheat cultivar Luke is FHB susceptible. A Luke × AQ population consisting of 1652 advanced recombinant inbred lines (RILs) was developed, from which 272 RILs were randomly sampled and used to construct a linkage map. Another 154 RILs were selected for homogeneity in plant height (PH) and flowering date (FD). This selection strategy was adopted to reduce possible confounding effects on FHB assessment due to variation in PH and FD. The 272 and 154 RILs were genotyped applying simple sequence repeat (SSR), diversity arrays technology (DArT) and single-nucleotide polymorphism (SNP) markers. The two sets of RILs were evaluated for FHB resistance applying point inoculation in greenhouses; the 154 RILs were also evaluated applying spray inoculation in multiple field environments. The linkage map consisted of 2088 SSR, DArT, and SNP markers. A FHB resistance quantitative trait locus (QTL), designated as QFhb.cau-7DL, was detected on chromosome arm 7DL; this QTL was closely linked to the SSR marker gwm428 ( http://www.wheat.pw.usda.gov/ggpages/SSR/ ). QFhb.cau-7DL was significantly effective (α = 0.01) in every test trial, and its effectiveness was validated using three additional wheat crosses. Sumai 3 (donor wheat of the FHB resistance gene Fhb1) was used in one of these crosses. QFhb.cau-7DL was comparable to Fhb1 in effect magnitude, providing a great potential for improving FHB resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-018-3213-4 | DOI Listing |
Nat Genet
January 2025
The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centre and State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
Ambiguity about whether the histidine-rich calcium-binding protein-coding gene (His) or the pore-forming toxin-like gene (PFT) or both are responsible for Fusarium head blight (FHB) resistance conferred by the Fhb1 quantitative trait locus hinders progress toward elucidating Fhb1 resistance mechanisms. Here, with a series of developed lines with or without PFT but all possessing His and five His-carrying PFT mutant lines created via gene editing, we show that PFT does not confer FHB resistance and that the His resistance effect does not require PFT in the tested conditions. We also show that PFT mutations are not associated with morphological and phenological characteristics that often affect FHB severity.
View Article and Find Full Text PDFMol Breed
January 2025
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway.
Unlabelled: Genomic selection-based breeding programs offer significant advantages over conventional phenotypic selection, particularly in accelerating genetic gains in plant breeding, as demonstrated by simulations focused on combating Fusarium head blight (FHB) in wheat. FHB resistance, a crucial trait, is challenging to breed for due to its quantitative inheritance and environmental influence, leading to slow progress using conventional breeding methods. Stochastic simulations in our study compared various breeding schemes, incorporating genomic selection (GS) and combining it with speed breeding, against conventional phenotypic selection.
View Article and Find Full Text PDFPlant Genome
March 2025
CREA - Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda (PC), Italy.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Chemical control of head blight (FHB) in wheat plants is often challenged by the resistance outbreak and deoxynivalenol (DON) accumulation. Developing green partners for fungicides is crucial for reducing fungal growth, mycotoxin contamination, and agricultural fungicides input. Herein, we investigated the mechanism of MgO nanoparticles (NPs) in controlling FHB.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2024
University of Illinois at Urbana-Champaign, Crop Sciences, Urbana, Illinois, United States;
is one of the most important plant-pathogenic fungi that causes disease on wheat and maize, as it decreases yield in both crops and produces mycotoxins that pose a risk to human and animal health. Resistance to Fusarium head blight (FHB) in wheat is well studied and documented. However, resistance to Gibberella ear rot (GER) in maize is less understood, despite several similarities with FHB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!