Distinct transcriptomic response of S. coelicolor to ciprofloxacin in a nutrient-rich environment.

Appl Microbiol Biotechnol

Department of Chemical Engineering, IIT Bombay, Powai, 400076, India.

Published: December 2018

With the rising threat of anti-microbial resistance (AMR), there is an urgent need to enhance efficacy of existing antibiotics. Understanding the myriad mechanisms through which bacteria evade these drugs would be of immense value to designing novel strategies against them. Streptomyces coelicolor A3(2) M145 belongs to the actinomyctes species that are responsible for more than two-thirds of antibiotics. This group of bacteria therefore encodes for various mechanisms that can resist both endogenous and non-endogenous antibiotics. In an earlier study, we had studied the transcriptomic response of these bacteria to ciprofloxacin, when cultured in a minimal media. In this work, we investigate why the minimum inhibitory concentration of the drug increases by fourfold when the bacteria are grown in a nutrient-rich media. Through transcriptomic, biochemical, and microscopic studies, we show that S. coelicolor responds to ciprofloxacin in a concentration-dependent manner. While, sub-inhibitory concentration of the drug primarily causes oxidative stress, the inhibitory concentration of ciprofloxacin evokes a more severe genome-wide response in the cell, which ranges from the familiar upregulation of the SOS response and DNA repair pathways to the widespread alterations in the central metabolism pathway to accommodate the increased needs of nucleotides and other precursors. Further, the upregulation of peptidoglycan synthesis genes, along with microscopy images, suggest alterations in the cell morphology to increase fitness of the bacteria during the antibiotic stress. The data also points to the enhanced efflux activity in cells cultured in rich media that contributes significantly towards reducing intracellular drug concentration and thus promotes survival.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-018-9398-2DOI Listing

Publication Analysis

Top Keywords

transcriptomic response
8
inhibitory concentration
8
concentration drug
8
bacteria
5
distinct transcriptomic
4
response
4
response coelicolor
4
ciprofloxacin
4
coelicolor ciprofloxacin
4
ciprofloxacin nutrient-rich
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!