Gradient Boosted Trees for Corrective Learning.

Mach Learn Med Imaging

University Pennsylvania, Philadelphia, PA 19104, USA.

Published: September 2017

Random forests (RF) have long been a widely popular method in medical image analysis. Meanwhile, the closely related gradient boosted trees (GBT) have not become a mainstream tool in medical imaging despite their attractive performance, perhaps due to their computational cost. In this paper, we leverage the recent availability of an efficient open-source GBT implementation to illustrate the GBT method in a corrective learning framework, in application to the segmentation of the caudate nucleus, putamen and hippocampus. The size and shape of these structures are used to derive important biomarkers in many neurological and psychiatric conditions. However, the large variability in deep gray matter appearance makes their automated segmentation from MRI scans a challenging task. We propose using GBT to improve existing segmentation methods. We begin with an existing 'host' segmentation method to create an estimate surface. Based on this estimate, a surface-based sampling scheme is used to construct a set of candidate locations. GBT models are trained on features derived from the candidate locations, including spatial coordinates, image intensity, texture, and gradient magnitude. The classification probabilities from the GBT models are used to calculate a final surface estimate. The method is evaluated on a public dataset, with a 2-fold cross-validation. We use a multi-atlas approach and FreeSurfer as host segmentation methods. The mean reduction in surface distance error metric for FreeSurfer was 0.2 - 0.3 mm, whereas for multi-atlas segmentation, it was 0.1mm for each of caudate, putamen and hippocampus. Importantly, our approach outperformed an RF model trained on the same features ( < 0.05 on all measures). Our method is readily generalizable and can be applied to a wide range of medical image segmentation problems and allows any segmentation method to be used as input.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186453PMC
http://dx.doi.org/10.1007/978-3-319-67389-9_24DOI Listing

Publication Analysis

Top Keywords

gradient boosted
8
boosted trees
8
corrective learning
8
medical image
8
segmentation
8
putamen hippocampus
8
segmentation methods
8
segmentation method
8
candidate locations
8
gbt models
8

Similar Publications

Background: Fertility preferences refer to the number of children an individual would like to have, regardless of any obstacles that may stand in the way of fulfilling their aspirations. Despite the creation and application of numerous interventions, the overall fertility rate in West African nations, particularly Nigeria, is still high at 5.3% according to 2018 Nigeria Demographic and Health Survey data.

View Article and Find Full Text PDF

Over time, the importance of virtual power plants (VPP) has markedly risen to seamlessly incorporate the sporadic nature of renewable energy sources into the existing smart grid framework. Simultaneously, there is a growing need for advanced forecasting methods to bolster the grid's stability, flexibility, and dispatchability. This paper presents a dual-pronged, innovative approach to maximize income in the day-ahead power market through VPP.

View Article and Find Full Text PDF

Meta-heuristic optimization algorithms are widely applied across various fields due to their intelligent behavior and fast convergence, but their use in optimizing engine behavior remains limited. This study addresses this gap by integrating the Design of Experiments-based Response Surface Methodology (RSM) with meta-heuristic optimization techniques to enhance engine performance and emissions characteristics using Tectona Grandi's biodiesel with Elaeocarpus Ganitrus as an additive. Advanced Machine Learning (ML) models, including Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGB), and Random Trees (RT), were employed for predictive analysis, with ANN outperforming RSM in accuracy.

View Article and Find Full Text PDF

Forests play a vital role in environmental balance, supporting biodiversity and contributing to atmospheric purification. However, forest fires threaten this balance, making the identification of forest fire probability (FFP) areas crucial for effective mitigation. This study assesses forest fire trends and susceptibility in the Similipal Biosphere Reserve (SBR) from 2012 to 2023 using four machine learning models-extreme gradient boosting tree (XGBTree), AdaBag, random forest (RF), and gradient boosting machine (GBM).

View Article and Find Full Text PDF

Nitrate, a highly reactive form of inorganic nitrogen, is commonly found in aquatic environments. Understanding the dynamics of nitrate-N concentration in rivers and its interactions with other water-quality parameters is crucial for effective freshwater ecosystem management. This study uses advanced machine learning models to analyse water quality parameters and predict nitrate-N concentrations in the lower stretch of the Ganga River from the observations of six annual periods (2017 to 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!