A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Linkage analysis reveals allosteric coupling in Kir2.1 channels. | LitMetric

Potassium-selective inward rectifier (Kir) channels are a class of membrane proteins necessary for maintaining stable resting membrane potentials, controlling excitability, and shaping the final repolarization of action potentials in excitable cells. In addition to the strong inward rectification of the ionic current caused by intracellular blockers, Kir2.1 channels possess "weak" inward rectification observed in inside-out patches after prolonged washout of intracellular blockers. The mechanisms underlying strong inward rectification have been attributed to voltage-dependent block by intracellular Mg and polyamines; however, the mechanism responsible for weak rectification remains elusive. Hypotheses include weak voltage-dependent block and intrinsic voltage-dependent gating. Here, we performed a conductance Hill analysis of currents recorded with a double-ramp protocol to evaluate different mechanisms proposed for weak inward rectification of Kir2.1 channels. Linkage analysis in the form of a Hill plot revealed that the ramp currents could be best explained by allosteric coupling between a mildly voltage-dependent pore gate (gating charge ∼0.18 e) and a voltage sensor (gating charge ∼1.7 e). The proposed voltage sensor stabilized the closing of the pore gate (coupling factor ∼31). We anticipate that the use of linkage analysis will broaden understanding of functional coupling in ion channels and proteins in general.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6219689PMC
http://dx.doi.org/10.1085/jgp.201812127DOI Listing

Publication Analysis

Top Keywords

linkage analysis
12
kir21 channels
12
allosteric coupling
8
strong rectification
8
intracellular blockers
8
voltage-dependent block
8
weak rectification
8
pore gate
8
gating charge
8
voltage sensor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!