Spatially Resolved Spectroscopic Extreme Ultraviolet Reflectometry for Laboratory Applications.

J Nanosci Nanotechnol

Chair for Experimental Physics of Extreme Ultraviolet, RWTH Aachen University, Steinbachstr. 15, 52074 Aachen, Germany.

Published: January 2019

Spatially resolved extreme ultraviolet reflectometry is presented in application to a local characterization of thin non-uniform contamination layers. Sample reflectivity mapping is performed, demonstrating high chemical sensitivity of the technique. Amorphous Al₂O₃ and carbon are determined as the contaminants of the studied silicon wafer. The results correlate with those obtained by energy-filtering photoemission electron microscopy. A laboratory tool is developed that is capable of multi-angle (2°-15°) and spectrally broadband (9.5-17 nm) extreme ultraviolet reflectometry at grazing incidence combined with a reduced sample illumination spot size, enabling spatially resolved metrology. A minimum EUV spot size of 25×30 m in the sample plane is achieved experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.16470DOI Listing

Publication Analysis

Top Keywords

spatially resolved
12
extreme ultraviolet
12
ultraviolet reflectometry
12
spot size
8
resolved spectroscopic
4
spectroscopic extreme
4
reflectometry laboratory
4
laboratory applications
4
applications spatially
4
resolved extreme
4

Similar Publications

Multiplexed spatial mapping of chromatin features, transcriptome and proteins in tissues.

Nat Methods

January 2025

Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.

View Article and Find Full Text PDF

Nuclear Magnetic Resonance Study of Monoclonal Antibodies Near an Oil-Water Interface.

J Pharm Sci

January 2025

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, USA, 32310; Center for Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA, 32310. Electronic address:

Monoclonal antibodies (mAb) represent an important class of biologic therapeutics that can treat a variety of diseases including cancer, autoimmune disorders or respiratory conditions (e.g. COVID-19).

View Article and Find Full Text PDF

Zonal Characteristics of Collagen Ultrastructure and Responses to Mechanical Loading in Articular Cartilage.

Acta Biomater

January 2025

Biomedical Engineering, College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK. Electronic address:

The biomechanical properties of articular cartilage arise from a complex bioenvironment comprising hierarchically organised collagen networks within the extracellular matrix (ECM) that interact with the proteoglycan-rich interstitial fluid. This network features a depth-dependent fibril organisation across different zones. Understanding how collagen fibrils respond to external loading is key to elucidating the mechanisms behind lesion and managing degenerative conditions like osteoarthritis.

View Article and Find Full Text PDF

The biodiversity of ice-free Antarctica database.

Ecology

January 2025

Securing Antarctica's Environmental Future, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.

Antarctica is one of Earth's most untouched, inhospitable, and poorly known regions. Although knowledge of its biodiversity has increased over recent decades, a diverse, wide-ranging, and spatially explicit compilation of the biodiversity that inhabits Antarctica's permanently ice-free areas is unavailable. This absence hinders both Antarctic biodiversity research and the integration of Antarctica in global biodiversity-related studies.

View Article and Find Full Text PDF

Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe and Fe, the transition between which generates distinct reactive oxygen species (ROS) such as HO, OH anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!