In this paper, we study the thermal activation of CO₂ on the surface of small Au nanoparticles supported on TiO₂ and titanate nanotube. We characterize the catalysts with high resolution transmission electron microscopy (HR-TEM) and total gold content measurement. We performed catalytic test in flow reactors then we investigate the surface of the catalysts during the adsorption and reaction processes by diffuse reflectance infrared spectroscopy (DRIFTS). The size of gold nanoparticles on the surface has been found to have the most important effect on the final activity of the studied catalysts. Significantly higher TOF values were obtained when the size of Au were smaller on both TiO₂ and titanate nanotube supports. The size of the Au nanoparticles with the method of their preparation was controlled. The gold adatom promotes the adsorption and scission of CO₂, but the nature of the support has got important effect, too. The explored reaction schemes may pave the way towards novel catalytic materials that can solve challenges associated with the activation of CO₂ and thus contribute to a greener chemistry related to it.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2019.15772DOI Listing

Publication Analysis

Top Keywords

activation co₂
8
tio₂ titanate
8
titanate nanotube
8
gold
5
gold size
4
size thermal-induced
4
thermal-induced reaction
4
co₂
4
reaction co₂
4
co₂ h₂
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!