Fique fibers, native to Colombia, are traditionally used for ropes and bags. In the extraction of long fibers for these purposes, the same amount of short fibers is generated; the short fibers are then discarded in the soil or in landfills. This agro-industrial waste is cellulose-rich and can be potentially developed into new biobased products. As an alternative use for these fibers, viscose regenerated fibers with potential applications in the textile industry were developed. Fique waste fibers were pulped (to produce fique cellulose pulp, FCP) using a 3³ design of experiment (DOE) to adjust the variables of the whitening treatment, and DOE analysis showed that time and hydrogen peroxide concentration do not have a significant effect on non-cellulosic remotion, unlike temperature. The behavior of this pulp in the production of viscose was compared against that of commercially available wood cellulose pulp (WCP). FCP showed a suitable cellulose content with a high degree of polymerization, which makes it a viable pulp for producing discontinuous viscose rayon filaments. Both pulps showed the same performance in the production of the viscose dope and the same chemical, thermal, and mechanical behavior after being regenerated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222474 | PMC |
http://dx.doi.org/10.3390/molecules23102640 | DOI Listing |
Foods
December 2024
Faculty of Horticulture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu, Alley, 700490 Iasi, Romania.
Rich in bioactive compounds, carbohydrates, fibers, minerals, and trace elements, apple pomace (AP) is a significant agro-industrial by-product, which pollutes and brings high management costs. The current study investigates the possibility of using an aqueous AP extract (APE) as the main ingredient in a jelly candy recipe, replacing artificial colors and flavors and improving its nutritional value. APE and formulated jelly candies were analyzed in terms of their phytochemical profile, antioxidant capacity, and color parameters.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architectural and Construction Design, Faculty of Architecture, Wrocław University of Science and Technology, Politechnika Wrocławska 27, 50-370 Wrocław, Poland.
This research presents a proposal for alkali-activated permeable concrete composites with the use of industrial by-products, including ground granulated blast-furnace slag (GGBS) and waste-foundry sand, as well as agro-desecrate product, i.e., sugarcane bagasse ash (SBA).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.
View Article and Find Full Text PDFMolecules
December 2024
Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1 N 70-01, Medellín 050031, Colombia.
The agroindustry generates substantial quantities of byproducts, particularly in coffee production, which yields significant waste, most notably spent coffee grounds (SCGs). This study explores the potential of SCGs as a versatile resource for applications in both food and nonfood sectors. A comprehensive chemical analysis revealed that SCGs consist of 30.
View Article and Find Full Text PDFLife (Basel)
December 2024
Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy.
Fungi and soil bacteria are vital for organic matter decomposition and biogeochemical cycles, but excessive synthetic fertilizer use contributes to soil degradation and loss of biodiversity. Despite this, about 97% of soil microorganisms are unculturable, making them difficult to study. Metagenomics offers a solution, enabling the direct extraction of DNA from soil to uncover microbial diversity and functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!