The morphology and micromechanical properties of the mineral crystals embedded in the pecan nutshell (Carya illinoinensis) were characterized. Qualitative and quantitative morphological analyses carried out revealed that the crystals were comprised of calcium oxalate (CaOx) and have a wide range of sizes, with prismatic shapes, distributed heterogeneously in the sclerenchyma tissue. From indentation tests, it was found that CaOx crystals are stiffer structures compared to stone cells (sclerenchyma tissue), showing hardness and elastic modulus values of 0.53 ± 0.19 GPa and 9.4 ± 1.80 GPa, respectively. Additionally, the values of fracture toughness (0.08 ± 0.02 MPa m) and the brittleness index (9336 m) revealed that these types of structures are extremely brittle. The results obtained suggest that the main function of the CaOx crystals is to provide structural support to tissue. The presented methodology demonstrates the potential of the instrumented indentation technique (IIT) for in situ micromechanical characterization of mineral crystals located in plant tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2018.10.008 | DOI Listing |
Gut Microbes
December 2025
Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
Hyperoxaluria, including primary and secondary hyperoxaluria, is a disorder characterized by increased urinary oxalate excretion and could lead to recurrent calcium oxalate kidney stones, nephrocalcinosis and eventually end stage renal disease. For secondary hyperoxaluria, high dietary oxalate (HDOx) or its precursors intake is a key reason. Recently, accumulated studies highlight the important role of gut microbiota in the regulation of oxalate homeostasis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, P. R. China.
The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, Univ. Gustave Eiffel, ISTerre, 38000, Grenoble, France.
Cadmium (Cd) concentrations in cacao beans from Latin America often exceed limits for trading. A better understanding of the mechanisms of Cd accumulation in Theobroma cacao L. trees is necessary to advance mitigation strategies.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
Hyperoxaluria can easily induce calcium oxalate (CaOx) crystals and cause cell damage, thereby increasing the risk of kidney stone formation. In this study, three sulfated polysaccharides (PSPs) were obtained by the sulfur trioxide-pyridine method. The antioxidant activity of PSPs and the inhibitory effects of PSPs on CaOx crystallization, cellular oxidative damage, and cellular inflammation were explored in vitro, and PSPs were used to treat hyperoxaluria-induced crystallization model mice in order to validate the stone-preventive effect of PSPs in vivo.
View Article and Find Full Text PDFUrolithiasis
December 2024
Department of Nephro-urology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Japan.
The early stages of kidney crystal formation involve inflammation and hypoxia-induced cell injury; however, the role of the hypoxic response in kidney crystal formation remains unclear. This study investigated the effects of a prolyl hydroxylase domain inhibitor (roxadustat) on renal calcium oxalate (CaOx) crystal formation through in vitro and in vivo approaches. In the in vitro experiment, murine renal tubular cells (RTCs) were exposed to varying roxadustat concentrations and CaOx crystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!