Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Functional plasticity of the adult brain is well established. Recently, the structural counterpart to such plasticity has been suggested by neuroimaging studies showing experience-dependent differences in gray matter (GM) volumes. Within the primary and secondary olfactory cortices, reduced GM volumes have been demonstrated in patients with olfactory loss. However, these cross-sectional studies do not provide causal evidence for GM volume change, and thereby structural plasticity. Disorders of the peripheral olfactory system, such as chronic rhinosinusitis (CRS), provide an ideal model to study GM structural plasticity, given that patients may experience long periods of olfactory impairment, followed by near complete recovery with treatment. We therefore performed a prospective longitudinal study in patients undergoing surgical treatment for CRS. We used voxel-based morphometry (VBM) to investigate GM volume change in 12 patients (M:F = 7:5; 47.2 ± 14.9 years), 3 months post-op. There was a significant improvement in olfactory function according to birhinal psychophysical testing. We performed a voxel-wise region of interest analysis, with significance corrected for number of regions (p < 0.0036). We found significantly increased post-operative GM volumes within the primary (left piriform cortex, right amygdala) and secondary (right orbitofrontal cortex, caudate nucleus, hippocampal-parahippocampal complex and bilateral temporal poles) olfactory networks, and decreased GM volumes within the secondary network only (left caudate nucleus and temporal pole, bilateral hippocampal-parahippocampal complex). As a control measure, we assessed GM change within V1, S1 and A1, where there were no suprathreshold voxels. To our knowledge, this is the first study to demonstrate GM structural plasticity within the primary and secondary olfactory cortices, following restoration of olfaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2018.10.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!