Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To compare the diagnostic capability of three-dimensional (3D) macular parameters against traditional two-dimensional (2D) retinal nerve fiber layer (RNFL) thickness using spectral domain optical coherence tomography. To determine if manual correction and interpolation of B-scans improve the ability of 3D macular parameters to diagnose glaucoma.
Methods: A total of 101 open angle glaucoma patients (29 with early glaucoma) and 57 healthy subjects had peripapillary 2D RNFL thickness and 3D macular volume scans. Four parameters were calculated for six different-sized annuli: total macular thickness (M-thickness), total macular volume (M-volume), ganglion cell complex (GCC) thickness, and GCC volume of the innermost 3 macular layers (retinal nerve fiber layer + ganglion cell layer + inner plexiform layer). All macular parameters were calculated with and without correction and interpolation of frames with artifacts. The areas under the receiver operating characteristic curves (AUROC) were calculated for all the parameters.
Results: The 3D macular parameter with the best diagnostic performance was GCC-volume-34, with an inner diameter of 3 mm and an outer of 4 mm. The AUROC for RNFL thickness and GCC-volume-34 were statistically similar for all regions (global: RNFL thickness 0.956, GCC-volume-34 0.939, P value = 0.3827), except for the temporal GCC-volume-34, which was significantly better than temporal RNFL thickness (P value = 0.0067). Correction of artifacts did not significantly change the AUROC of macular parameters (P values between 0.8452 and 1.0000).
Conclusions: The diagnostic performance of best macular parameters (GCC-volume-34 and GCC-thickness-34) were similar to or better than 2D RNFL thickness. Manual correction of artifacts with data interpolation is unnecessary in the clinical setting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188465 | PMC |
http://dx.doi.org/10.1167/iovs.18-23813 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!