Clinical Application of 3-Dimensional Printing Technology for Patients With Nasal Septal Deformities: A Multicenter Study.

JAMA Otolaryngol Head Neck Surg

Department of Otolaryngology-Head and Neck Surgery, Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.

Published: December 2018

Importance: Studies have shown the controllability and porosity of polycaprolactone as well as the use of 3-dimensional (3-D) printing for nasal reconstruction in animal models. The utility of polycaprolactone with 3-D technology in nasal cartilaginous framework reconstruction in humans remains unknown.

Objective: To investigate the safety and efficacy of 3-D printed, bioresorbable polycaprolactone nasal implants.

Design, Setting, And Participants: This multicenter clinical trial comprised 20 patients with caudal septal deviations who underwent septoplasty, which used a 3-D printed polycaprolactone mesh, at 2 centers in South Korea. Patients were included if they were aged 18 to 74 years and had nasal septal deviations, Nasal Obstruction Symptom Evaluation scores greater than 20, and persistent nasal obstructions. Twenty-two patients met the inclusion criteria, but 2 patients were excluded before the operation. The study was conducted from July 1, 2016, to June 30, 2017.

Main Outcomes And Measures: The change in total Nasal Obstruction Symptom Evaluation score between the preoperative examination and the week 12 postoperative examination was the primary outcome. Changes in bilateral nasal cavity minimum cross-sectional area and volume on acoustic rhinometry at weeks 4 and 12 after the operation as well as changes in the nasal cavity cross-sectional area at the osteomeatal unit and nasal septum angle in the paranasal sinus on computed tomography after week 12 were among the secondary outcomes.

Results: Of the 20 patients included in the study, 4 (20%) were female, 16 (80%) were male, with a mean (SD) age of 34.95 (11.96) years. The preoperative and week 12 postoperative results revealed significant changes in the minimal cross-sectional areas on acoustic rhinometry (0.41 [SD, 0.39] vs -0.11 [SD, 0.18]; difference, 0.42; 95% CI, 0.23-0.61), nasal septum angles on computed tomography (11.22 [SD, 6.57] vs 2.89 [SD, 3.12]; difference, 8.33; 95% CI, 5.08-11.58), and Nasal Obstruction Symptom Evaluation scores (73.50 [SD, 19.88] vs 3.75 [SD, 6.26]; difference, 69.75; 95% CI, 59.22-80.28). The surgeons' convenience level with the procedure was favorable (visual analog scale score [SD], 90.90 [9.45]), and so were the patients' symptom improvements and satisfaction after 12 weeks (visual analog scale score [SD], 88.30 [9.87]).

Conclusions And Relevance: The 3-D printed, homogeneous, composite, microporous polycaprolactone nasal implant demonstrated proper mechanical support and thinness with excellent biocompatibility and surgical manipulability. Polycaprolactone may be a clinically biocompatible material for use in various craniofacial reconstructions in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6583092PMC
http://dx.doi.org/10.1001/jamaoto.2018.2054DOI Listing

Publication Analysis

Top Keywords

nasal
14
3-d printed
12
nasal obstruction
12
obstruction symptom
12
symptom evaluation
12
nasal septal
8
polycaprolactone nasal
8
septal deviations
8
patients included
8
evaluation scores
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!