In recent architectural research, thin wooden bilayer laminates capable of self-actuation in response to humidity changes have been proposed as sustainable, programmed, and fully autonomous elements for facades or roofs for shading and climate regulation. Switches, humidistats, or motor elements represent further promising applications. Proper wood-adapted prediction models for actuation, however, are still missing. Here, a simple model that can predict bending deformation as a function of moisture content change, wood material parameters, and geometry is presented. We consider material anisotropy and moisture-dependency of elastic mechanical parameters. The model is validated using experimental data collected on bilayers made out of European beech wood. Furthermore, we present essential design aspects in view of facilitated industrial applications. Layer thickness, thickness-ratio, and growth ring angle of the wood in single layers are assessed by their effect on curvature, stored elastic energy, and generated axial stress. A sensitivity analysis is conducted to identify primary curvature-impacting model input parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191116 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205607 | PLOS |
Addiction
January 2025
Department of Addictions, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
Background And Aims: Many vaping products feature bright colors and novel brand names and flavor descriptors, which may appeal to youth. We measured the strength of the associations between e-liquid packaging design (branded, white standardized or white standardized limiting brand and flavor descriptors) and perceived peer interest in trying the e-liquids among youth.
Design: A between-subjects online experiment.
Proteins have proven to be useful agents in a variety of fields, from serving as potent therapeutics to enabling complex catalysis for chemical manufacture. However, they remain difficult to design and are instead typically selected for using extensive screens or directed evolution. Recent developments in protein large language models have enabled fast generation of diverse protein sequences in unexplored regions of protein space predicted to fold into varied structures, bind relevant targets, and catalyze novel reactions.
View Article and Find Full Text PDFUncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics.
View Article and Find Full Text PDFA significant advancement in synthetic biology is the development of synthetic gene circuits with predictive Boolean logic. However, there is no universally accepted or applied statistical test to analyze the performance of these circuits. Many basic statistical tests fail to capture the predicted logic (OR, AND, etc.
View Article and Find Full Text PDFUnlabelled: Quantitative understanding of mitochondrial heterogeneity is necessary for elucidating the precise role of these multifaceted organelles in tumor cell development. We demonstrate an early mechanistic role of mitochondria in initiating neoplasticity by performing quantitative analyses of structure-function of single mitochondrial components coupled with single cell transcriptomics. We demonstrate that the large Hyperfused-Mitochondrial-Networks (HMNs) of keratinocytes promptly get converted to the heterogenous Small-Mitochondrial-Networks (SMNs) as the stem cell enriching dose of the model carcinogen, TCDD, depolarizes mitochondria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!