Properties of novel surfactin-derived biosurfactants obtained through solid-phase synthesis.

J Pept Sci

Programa de Biologia Estrutural, Lab. Est. e Reg. de Proteínas e ATPases, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

Published: November 2018

Eight molecules, four peptides (SPs) and four lipopeptides (LPs) derived by rational design from surfactin, a well-known secreted biosurfactant from Bacillus subtilis, were produced employing Fmoc-based solid-phase synthesis. These new peptides were tested to evaluate their potential biosurfactant and biological activities, aiming at possible applications in industrial, biological, pharmaceutical, and medical use. Five molecules (SP1, SP2, SP4, LP5, and LP8) presented potential for medical uses, mainly due to their drug delivery properties as suggested by their synergistic activity with the antibiotic vancomycin against Staphylococcus aureus. All synthetic peptides showed low toxicity against Vero cell cultures, in assays of hemolysis, and in different cytotoxicity assays. In addition, we found that three peptides (SP1, LP6, and LP7) had potential technological and industrial use because of their emulsifying capacity, low toxicity, and ability to physically stabilize solutions. These novel molecules retained some properties of the parental molecule (surfactin, which was originally obtained through nonribosomal synthesis in Bacillus subtilis) but have the advantage of being linear peptides, which can be produced at large scales through the use of conventional heterologous protein expression protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1002/psc.3129DOI Listing

Publication Analysis

Top Keywords

solid-phase synthesis
8
bacillus subtilis
8
low toxicity
8
peptides
5
properties novel
4
novel surfactin-derived
4
surfactin-derived biosurfactants
4
biosurfactants solid-phase
4
synthesis molecules
4
molecules peptides
4

Similar Publications

Spray-Flame Synthesis (SFS) and Characterization of LiAlYTi(PO) [LA(Y)TP] Solid Electrolytes.

Nanomaterials (Basel)

December 2024

Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.

Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.

View Article and Find Full Text PDF

Design and preparation of novel magnetic covalent organic framework for the simultaneous preconcentration and sensitive determination of six aflatoxins in food samples.

Food Chem

December 2024

Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China; Key Laboratory of Food Quality and Safety for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China. Electronic address:

An innovative core-shell covalent organic framework (COF), FeO@COF (ETTBA-ND), was synthesized through a facile and energy-efficient method. This adsorbent facilitated magnetic solid phase extraction (MSPE) of six AFs prior to LC-MS/MS analysis, achieving one-step purification and enrichment in food matrices. The successful synthesis of the adsorbent was confirmed using various techniques, with adsorption capacities ranging from 46.

View Article and Find Full Text PDF

Phosphorous-containing materials are used in a wide array of fields, from energy conversion and storage to heterogeneous catalysis and biomaterials. Among these materials, organic-inorganic metal phosphonate solids and thin films present an interesting option, due to their remarkable thermal and chemical stability. Yet, the synthesis of phosphonate hybrids by vapour phase thin film deposition techniques remains largely unexplored.

View Article and Find Full Text PDF

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long‐term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer’s disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Background: As amyloid‐β (Aβ) aggregates are considered as the biomarkers and key factors in the pathology of Alzheimer’s disease, there has been extensive investigation into Aβ‐targeting compounds for the development of diagnostics and drug discovery related to the disorder. However, the polymorphic and heterogenous nature of Aβ aggregates impedes the structural understanding of their structure. Consequently it is a major challenge to develop new diagnostic and therapeutic development of AD and to study the mechanism of Aβ‐targeting compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!