Class II high-affinity potassium transporters (HKTs) have been proposed to mediate Na+-K+ co-transport in plants, as well as Na+ and K+ homeostasis under K+-starved and saline environments. We identified class II HKTs, namely SvHKT2;1 and SvHKT2;2 (SvHKTs), from the halophytic turf grass, Sporobolus virginicus. SvHKT2;2 expression in S. virginicus was up-regulated by NaCl treatment, while SvHKT2;1 expression was assumed to be up-regulated by K+ starvation and down-regulated by NaCl treatment. Localization analysis revealed SvHKTs predominantly targeted the plasma membrane. SvHKTs complemented K+ uptake deficiency in mutant yeast, and showed both inward and outward K+ and Na+ transport activity in Xenopus laevis oocytes. When constitutively expressed in Arabidopsis, SvHKTs mediated K+ and Na+ accumulation in shoots under K+-starved conditions, and the K+ concentration in xylem saps of transformants was also higher than in those of wild-type plants. These results suggest transporter-enhanced K+ and Na+ uploading to the xylem from xylem parenchyma cells. Together, our data demonstrate that SvHKTs mediate both outward and inward K+ and Na+ transport in X. laevis oocytes, and possibly in plant and yeast cells, depending on the ionic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcy202DOI Listing

Publication Analysis

Top Keywords

na+ transport
12
laevis oocytes
12
sporobolus virginicus
8
nacl treatment
8
outward na+
8
na+
6
svhkts
5
high-affinity transporters
4
transporters halophyte
4
halophyte sporobolus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!