An alkene-azide 1,3-dipolar cycloaddition between trans-cyclooctene (TCO) and an azide-capped hydrogel that promotes rapid gel dissolution is reported. Using an ultrashort aryl azide-capped peptide hydrogel (PhePhe), we have demonstrated proof-of-concept where upon reaction with TCO, the hydrogel undergoes a gel-sol transition via 1,2,3-triazoline degradation and 1,6-self-immolation of the generated aniline. The potential application of this as a general trigger in sustained drug delivery is demonstrated through release of encapsulated cargo (doxorubicin). Administration of TCO resulted in 87 % of the cargo being released in 10 h, compared to 13-14 % in the control gels. This is the first example of a potential bioorthogonal-triggered hydrogel dissolution using a traditional click-type reaction. This type of stimulus could be extended to other aryl azide-capped hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.201801184DOI Listing

Publication Analysis

Top Keywords

alkene-azide 13-dipolar
8
13-dipolar cycloaddition
8
peptide hydrogel
8
hydrogel dissolution
8
aryl azide-capped
8
hydrogel
5
cycloaddition trigger
4
trigger ultrashort
4
ultrashort peptide
4
dissolution alkene-azide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!