The acetyltransferase GcnE is part of the SAGA complex which regulates fungal gene expression through acetylation of chromatin. Target genes of the histone acetyltransferase GcnE include those involved in secondary metabolism and asexual development. Here, we show that the absence of GcnE not only abrogated conidiation, but also strongly impeded vegetative growth of hyphae in the human pathogenic fungus Aspergillus fumigatus. A yeast two-hybrid screen using a Saccharomyces cerevisiae strain whose tRNA molecules were specifically adapted to express A. fumigatus proteins identified two unprecedented proteins that directly interact with GcnE. Glutamine synthetase GlnA as well as a hypothetical protein located on chromosome 8 (GbpA) were identified as binding partners of GcnE and their interaction was confirmed in vivo via bimolecular fluorescence complementation. Phenotypic characterization of gbpA and glnA deletion mutants revealed a role for GbpA during conidiogenesis and confirmed the central role of GlnA in glutamine biosynthesis. The increase of glutamine synthetase activity in the absence of GcnE indicated that GcnE silences GlnA through binding. This finding suggests an expansion of the regulatory role of GcnE in A. fumigatus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00294-018-0891-zDOI Listing

Publication Analysis

Top Keywords

acetyltransferase gcne
12
gcne
9
yeast two-hybrid
8
histone acetyltransferase
8
aspergillus fumigatus
8
absence gcne
8
glutamine synthetase
8
two-hybrid screening
4
screening reveals
4
reveals dual
4

Similar Publications

Functional Characterization of the GNAT Family Histone Acetyltransferase Elp3 and GcnE in .

Int J Mol Sci

January 2023

Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea.

Post-translational modifications of chromatin structure by histone acetyltransferase (HATs) play a pivotal role in the regulation of gene expression and diverse biological processes. However, the function of GNAT family HATs, especially Elp3, in the opportunistic human pathogenic fungus is largely unknown. To investigate the roles of the GNAT family HATs Elp3 and GcnE in the , we have generated and characterized individual null Δ and Δ mutants.

View Article and Find Full Text PDF

Histone modifications play a crucial role in eukaryotic gene regulation. The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex controls histone acetylation, with Gcn5 (GcnE) acting as the acetyltransferase. In the Aspergillus species, GcnE has been shown to regulate asexual development and secondary metabolism.

View Article and Find Full Text PDF

Deletion of the epigenetic regulator GcnE in Aspergillus niger FGSC A1279 activates the production of multiple polyketide metabolites.

Microbiol Res

December 2018

School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China. Electronic address:

Epigenetic modification is an important regulatory mechanism in the biosynthesis of secondary metabolites in Aspergillus species, which have been considered to be the treasure trove of new bioactive secondary metabolites. In this study, we reported that deletion of the epigenetic regulator gcnE, a histone acetyltransferase in the SAGA/ADA complex, resulted in the production of 12 polyketide secondary metabolites in A. niger FGSC A1279, which was previously not known to produce toxins or secondary metabolites.

View Article and Find Full Text PDF

The acetyltransferase GcnE is part of the SAGA complex which regulates fungal gene expression through acetylation of chromatin. Target genes of the histone acetyltransferase GcnE include those involved in secondary metabolism and asexual development. Here, we show that the absence of GcnE not only abrogated conidiation, but also strongly impeded vegetative growth of hyphae in the human pathogenic fungus Aspergillus fumigatus.

View Article and Find Full Text PDF

The Aspergillus flavus Histone Acetyltransferase AflGcnE Regulates Morphogenesis, Aflatoxin Biosynthesis, and Pathogenicity.

Front Microbiol

September 2016

Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, and School of Life Sciences, Fujian Agriculture and Forestry University Fuzhou, China.

Histone acetyltransferases (HATs) help regulate fungal development and the production of secondary metabolites. In this study, we determined that the HAT AflGcnE influenced morphogenesis and aflatoxin biosynthesis in Aspergillus flavus. We observed that AflGcnE localized to the nucleus and cytoplasm during the conidial production and germination stages, while it was located mainly in the nucleus during the hyphal development stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!