Information on variability is important in the assessment of the releases and potential risks of brominated flame retardants (BRFs) in the environment, but related data are limited. In this study, two release-characterizing parameters, release fraction to final effluent and influent-biosolids transfer coefficient, were used to quantify releases of five BFRs from eight secondary wastewater treatment plants (WWTPs). The five BFRs are recalcitrant, hydrophobic, and low in volatility. The two parameters for these BFRs were found to vary from day to day and season to season within individual WWTPs as well as from one WWTP to another. These temporal and spatial variations were, however, comparable to each other and both within a factor of 3 above or below the parameter averages. Averages for release fraction were in the range of 0.02-0.29 and those for influent-biosolids transfer coefficient in the range of 3-26 L/g, depending upon a given BFR at a given WWTP. These ranges and the observed factor-3 variability are not only useful for estimating releases of the five BFRs, but more importantly provide read-across data for the assessment of substances with similar physical-chemical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6245005 | PMC |
http://dx.doi.org/10.1007/s11356-018-3403-2 | DOI Listing |
Sci Total Environ
January 2025
Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC, Canada; Université de Sherbrooke Water Research Group (GREAUS), Université de Sherbrooke, Sherbrooke, QC, Canada. Electronic address:
In Canada studies on the presence of trace organic contaminants (TrOCs) such as pharmaceuticals, personal care products, pesticides and flame retardants in lakes have primarily focused on the water column at localized scales. To address this gap, the occurrence of 44 TrOCs, representative of various types of human activities, was investigated in surface sediments (0-2 cm) from 193 lakes across Canada. A total of 28 targeted TrOCs were detected, with 99.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China. Electronic address:
Background: Exposure to brominated flame retardants (BFRs) may negatively impact human health. The association of BFRs with nonalcoholic fatty liver disease (NAFLD) in the general population is unclear. Meanwhile, limited studies have investigated the potential role of oxidative stress and inflammation in this link.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Fisheries College, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Technology Research Center for Aquatic Animal Disease Control and Prevention, Wuhan 430070, China. Electronic address:
The toxicity of tris (2-butoxyethyl) phosphate (TBOEP) has been extensively investigated because of its prevalence in the environment. Nevertheless, the risk factors associated with maternal transmission are poorly understood. In this study, sexually mature female zebrafish were treated with TBOEP (0, 20, 100, and 500 μg/L) for 30 days and were mated with unexposed males.
View Article and Find Full Text PDFChemosphere
January 2025
Department of Environmental Science, Kangwon National University, Chuncheon, 24341, Republic of Korea. Electronic address:
Environ Res
January 2025
School of Public Health, Capital Medical University, Beijing 100069, China. Electronic address:
Based on the third Chinese National Human Milk Survey (NHMS) conducted in 2016-2019, three typical legacy brominated flame retardants (BFRs), namely decabromodiphenyl ether (BDE-209), tetrabromobisphenol A (TBBPA), and hexabromocyclododecanes (HBCDDs, sum of three isomers), were measured in 100 pooled human milk samples collected from 24 provinces across China. The median concentrations of BDE-209, TBBPA and HBCDDs were 0.27, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!