A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Peptide nucleic acids targeting mitochondria enhances sensitivity of lung cancer cells to chemotherapy. | LitMetric

Acquired resistance to chemotherapy is a major limitation for the successful treatment of lung cancer. Previously, we and others showed that formation of tumor spheres is associated with chemotherapy resistance in lung cancer cells, but the underlying mechanisms remained largely unknown. In the current study, we show that mitochondrial activity is significantly higher in A549 tumor spheres versus monolayer cells, establishing mitochondria as a putative target for antitumor therapy. To this end, we designed a peptide nucleic acids (PNAs) coupled with triphenylphosphonium (TPP) to target the displacement loop (D-loop) regulatory region of mitochondrial DNA (PNA-mito). Treatment with PNA-mito significantly disrupted mitochondrial gene expression, inhibited membrane potential and mitochondria fusion, resulting in proliferation inhibition and cell death. Consistently, in mouse xenograft models, PNA-mito could efficiently inhibit mitochondrial gene expression and block tumor growth. Treatment with a low dose of PNA-mito could significantly enhance the chemotoxicity of cisplatin (CDDP) in drug-resistant A549 tumor spheres. These results establish mitochondria-targeting PNAs as a novel strategy to enhance the accumulative therapeutic outcome of lung cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176231PMC

Publication Analysis

Top Keywords

lung cancer
16
tumor spheres
12
peptide nucleic
8
nucleic acids
8
cancer cells
8
a549 tumor
8
mitochondrial gene
8
gene expression
8
acids targeting
4
targeting mitochondria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!