Metal-organic frameworks (MOFs) are hybrid materials based on crystalline coordination polymers that consist of metal ions connected by organic ligands. In addition to the traditional applications in gas storage and separation or catalysis, the long-range crystalline order in MOFs, as well as the tunable coupling between the organic and inorganic constituents, has led to the recent development of electrically conductive MOFs as a new generation of electronic materials. However, to date, the nature of charge transport in the MOFs has remained elusive. Here we demonstrate, using high-frequency terahertz photoconductivity and Hall effect measurements, Drude-type band-like transport in a semiconducting, π-d conjugated porous Fe(THT)(NH) (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF, with a room-temperature mobility up to ~ 220 cm V s. The temperature-dependent conductivity reveals that this mobility represents a lower limit for the material, as mobility is limited by impurity scattering. These results illustrate the potential for high-mobility semiconducting MOFs as active materials in thin-film optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-018-0189-zDOI Listing

Publication Analysis

Top Keywords

charge transport
8
transport semiconducting
8
mofs
5
high-mobility band-like
4
band-like charge
4
semiconducting two-dimensional
4
two-dimensional metal-organic
4
metal-organic framework
4
framework metal-organic
4
metal-organic frameworks
4

Similar Publications

Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.

View Article and Find Full Text PDF

Anchorable Polymers Enabling Ultra-Thin and Robust Hole-Transporting Layers for High-Efficiency Inverted Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.

Currently, the development of polymeric hole-transporting materials (HTMs) lags behind that of small-molecule HTMs in inverted perovskite solar cells (PSCs). A critical challenge is that conventional polymeric HTMs are incapable of forming ultra-thin and conformal coatings like self-assembly monolayers (SAMs), especially for substrates with rough surface morphology. Herein, we address this challenge by designing anchorable polymeric HTMs (CP1 to CP5).

View Article and Find Full Text PDF

Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.

View Article and Find Full Text PDF

Improved Efficiency and Stability of Perovskite Solar Cells Through Long-Chain Phenylammonium Additives.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

The addition of organic cationic iodides to form low-dimensional perovskite is an essential strategy for defect passivation in perovskite solar cells (PSCs). Specially, the 2D/3D perovskite structure can combine the stability of 2D perovskite and the high charge transport performance of 3D perovskite. Here, we introduced phenylammonium hydroiodide salts with different alkyl chain lengths into PSCs precursor solution to research the influence on formation of perovskite thin films and the photovoltaic performance of PSCs.

View Article and Find Full Text PDF

Self-powered broadband photodetectors (SPBPDs) hold great potential for next-generation optoelectronic applications, but their performance is often limited by interface defects that impair charge transport and increase recombination losses. In this work, we report the enhancement of the photodetection efficiency of SPBPDs by partially substituting copper (Cu) with silver (Ag) in kesterite CuZnSnS (ACZTS) thin films. Varying Ag concentrations (0%, 2%, 4%, 6%) are incorporated into the CZTS layer, forming a TiO/ACZTS heterojunction in superstrate configuration fabricated via a low-cost sol-gel spin-coating technique with low-temperature open air annealing avoiding conventional postdeposition sulfurization or selenization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!