Mutations leading to constitutive RAS activation contribute in myeloid leukemogenesis. RAS mutations in myeloid cells are accompanied by excessive formation of reactive oxygen species (ROS), but the source of ROS and their role for the initiation and progression of leukemia have not been clearly defined. To determine the role of NOX2-derived ROS in RAS-driven leukemia, double transgenic LSL-Kras × Mx1-Cre mice expressing oncogenic KRAS in hematopoietic cells (M-Kras) were treated with N-methyl-histamine (NMH) that targeted the production of NOX2-derived ROS in leukemic cells by agonist activity at histamine H receptors. M-Kras mice developed myeloid leukemia comprising mature CD11bGr1 myeloid cells that produced NOX2-derived ROS. Treatment of M-Kras mice with NMH delayed the development of myeloproliferative disease and prolonged survival. In addition, NMH-treated M-Kras mice showed reduction of intracellular ROS along with reduced DNA oxidation and reduced occurence of double-stranded DNA breaks in myeloid cells. The in vivo expansion of leukemia was markedly reduced in triple transgenic mice where KRAS was expressed in hematopoietic cells of animals with genetic NOX2 deficiency (Nox2 × LSL-Kras × Mx1-Cre). Treatment with NMH did not alter in vivo expansion of leukemia in these NOX2-deficient transgenic mice. We propose that NOX2-derived ROS may contribute to the progression of KRAS-induced leukemia and that strategies to target NOX2 merit further evaluation in RAS-mutated hematopoietic cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6372471PMC
http://dx.doi.org/10.1038/s41388-018-0528-1DOI Listing

Publication Analysis

Top Keywords

nox2-derived ros
16
myeloid cells
12
m-kras mice
12
myeloproliferative disease
8
hematopoietic cells
8
vivo expansion
8
expansion leukemia
8
transgenic mice
8
ros
7
cells
6

Similar Publications

Neutrophil NADPH oxidase promotes bacterial eradication and regulates NF-κB-Mediated inflammation via NRF2 signaling during urinary tract infections.

Mucosal Immunol

December 2024

Kidney and Urinary Tract Center, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Division of Nephrology and Hypertension, Nationwide Children's Hospital, Columbus, OH 43215, USA. Electronic address:

The precise role of neutrophil-derived reactive oxygen species (ROS) in combating bacterial uropathogens during urinary tract infections (UTI) remains largely unexplored. In this study, we elucidate the antimicrobial significance of NADPH oxidase 2 (NOX2)-derived ROS, as opposed to mitochondrial ROS, in facilitating neutrophil-mediated eradication of uropathogenic Escherichia coli (UPEC), the primary causative agent of UTI. Furthermore, NOX2-derived ROS regulate NF-κB-mediated inflammatory responses in neutrophils against UPEC by inducing the release of nuclear factor erythroid 2-related factor 2 (Nrf2) from its inhibitor, Kelch-like ECH-associated protein 1 (Keap1).

View Article and Find Full Text PDF

NADPH oxidase 2 (Nox2), a superoxide-generating enzyme, is a source of reactive oxygen species (ROS) that regulate the intracellular redox state, self-renewal, and fate of hematopoietic stem/progenitor cells (HSPCs). Nox2 complex expressed on HSPCs associated with several activated cell membrane receptors increases the intracellular level of ROS. In addition, ROS are also released from mitochondria and, all together, are potent activators of intracellular pattern recognition receptor Nlrp3 inflammasome, which regulates the trafficking, proliferation, and metabolism of HSPCs.

View Article and Find Full Text PDF

Impact of Surgery-Induced Myeloid-derived Suppressor Cells and the NOX2/ROS Axis on Postoperative Survival in Human Pancreatic Cancer.

Cancer Res Commun

April 2024

TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Unlabelled: Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent.

View Article and Find Full Text PDF

NCF4 regulates antigen presentation of cysteine peptides by intracellular oxidative response and restricts activation of autoreactive and arthritogenic T cells.

Redox Biol

June 2024

National Joint Engineering Research Center of Biodiagnostics and Biotherapy, and Department of Rheumatology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, PR China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, PR China; Medical Inflammation Research, Division of Immunology, Dept. of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden. Electronic address:

Autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematous, are regulated by polymorphisms in genes contributing to the NOX2 complex. Mutations in both Ncf1 and Ncf4 affect development of arthritis in experimental models of RA, but the different regulatory pathways mediated by NOX2-derived reactive oxygen species (ROS) have not yet been clarified. Here we address the possibility that intracellular ROS, regulated by the NCF4 protein (earlier often denoted p40phox) which interacts with endosomal membranes, could play an important role in the oxidation of cysteine peptides in mononuclear phagocytic cells, thereby regulating antigen presentation and activation of arthritogenic T cells.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While recent studies have demonstrated that SARS-CoV-2 may enter kidney and colon epithelial cells by inducing receptor-independent macropinocytosis, it remains unknown whether this process also occurs in cell types directly relevant to SARS-CoV-2-associated lung pneumonia, such as alveolar epithelial cells and macrophages. The goal of our study was to investigate the ability of SARS-CoV-2 spike protein subunits to stimulate macropinocytosis in human alveolar epithelial cells and primary human and murine macrophages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!