Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida.

Sci Rep

Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.

Published: October 2018

Menaquinone (vitamin K) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3-4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6189191PMC
http://dx.doi.org/10.1038/s41598-018-33663-wDOI Listing

Publication Analysis

Top Keywords

vitamin metabolism
8
red algae
8
host-pathogen biotic
4
biotic interactions
4
interactions shaped
4
vitamin
4
shaped vitamin
4
metabolism archaeplastida
4
archaeplastida menaquinone
4
menaquinone vitamin
4

Similar Publications

The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.

View Article and Find Full Text PDF

Background: Oral microbiome homeostasis is important for children's health, and microbial community is affected by anesthetics. The application of anesthetics in children's oral therapy has become a relatively mature method. This study aims to investigate the effect of different anesthesia techniques on children's oral microbiota.

View Article and Find Full Text PDF

Background: Keloids are disfiguring, fibrotic scar-like lesions that are challenging to treat and commonly recur after therapy. A deeper understanding of the mechanisms driving keloid formation is necessary for the development of more effective therapies. Reduced vitamin D receptor (VDR) expression has been observed in keloids, implicating vitamin D signaling in keloid pathology.

View Article and Find Full Text PDF

Vitamin D-VDR and vitamin A-RAR affect IL-13 and IFNγ secretion from human CD4 T cells directly and indirectly via competition for their shared co-receptor RXR.

Scand J Immunol

January 2025

LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The effects of vitamin D and vitamin A in immune cells are mediated through the vitamin D receptor (VDR) and retinoic acid receptor (RAR), respectively. These receptors share the retinoid X receptor (RXR) co-factor for transcriptional regulation. We investigated the effects of active vitamin D (1,25(OH)D) and 9-cis retinoic acid (9cRA) on T helper (T)1 and T2 cytokines and transcription factors in primary human blood-derived CD4 T cells.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Methotrexate is an anti-metabolic medication used to treat cancer. It causes oxidative stress in nerve tissue and has neurotoxic effects. A strong antioxidant and effective free radical scavenger is vitamin C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!