For proteins entering the secretory pathway, a major factor contributing to maturation and homeostasis is glycosylation. One relevant type of protein glycosylation is -mannosylation, which is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide study in the eukaryotic model organism revealed that more than 26% of all proteins entering the secretory pathway receive -mannosyl glycans. In a first attempt to understand the impact of -mannosylation on these proteins, we took advantage of a tandem fluorescent timer (tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of 137 unique -mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in mutants lacking the major protein -mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three Δ mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins could be identified. We observed that -mannosylation may cause both enhanced and diminished protein abundance and/or stability when compromised, and verified our findings on the examples of Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards unraveling the multiple functions of -mannosylation at the molecular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222916 | PMC |
http://dx.doi.org/10.3390/molecules23102622 | DOI Listing |
ACS Nano
January 2025
Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec H2X 0A9, Canada.
The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.
View Article and Find Full Text PDFAging Cell
January 2025
Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.
As emerging therapeutic strategies for aging and age-associated diseases, various biochemical approaches have been developed to selectively remove senescent cells, but how physical stimulus influences senescent cells and its possible application in senolytic therapy has not been reported yet. Here we developed a physical method to selectively stimulate senescent cells via low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS stimulation did not affect the cell cycle, but selectively enhanced secretion of specific cytokines in senescent cells, known as the senescence-associated secretory phenotype (SASP), resulting in enhanced migration of monocytes/macrophages and upregulation of phagocytosis of senescent cells by M1 macrophage.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
Skeletal muscle plays a significant role in both local and systemic energy metabolism. The current investigation aims to explore the role of the Bambi gene in skeletal muscle, focusing on its implications for muscle hypertrophy and systemic metabolism. We hypothesize that skeletal muscle-specific deletion of Bambi induces muscle hypertrophy, improves metabolic performance, and activates thermogenic adipocytes via the reprogramming of progenitor of iWAT, offering potential therapeutic strategies for metabolic syndromes.
View Article and Find Full Text PDFAdipocyte
December 2025
Department of Nephrology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes.
View Article and Find Full Text PDFSci Rep
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.
Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating diverse neuronal functions in an activity-dependent manner. Although BDNF is synthesized primarily in neurons, astrocytes can also supply BDNF through various routes, including the recycling of neuron-derived BDNF. Despite accumulating evidence for astrocytic BDNF uptake and resecretion of neuronal BDNF, the detailed mechanisms underlying astrocytic BDNF recycling remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!