The measurement of personal exposure to radiofrequency electromagnetic fields (RF-EMFs) is important for epidemiological studies. RF-EMF exposure can be measured using personal exposimeters that register RF-EMFs over a wide range of frequency bands. This study aimed to measure and describe personal RF-EMF exposure levels from a wide range of frequency bands. Measurements were recorded from 63 participants over an average of 27.4 (±4.5) hours. RF-EMF exposure levels were computed for each frequency band, as well as from downlink (RF from mobile phone base station), uplink (RF from mobile phone handsets), broadcast, and Wi-Fi. Participants had a mean (±SD) age of 36.9 ± 12.5 years; 66.7% were women; and almost all (98.2%) from urban areas. A Wi-Fi router at home was reported by 61 participants (96.8%), with 38 (61.2%) having a Wi-Fi enabled smart TV. Overall, 26 (41.3%) participants had noticed the existence of a mobile phone base station in their neighborhood. On average, participants estimated the distance between the base station and their usual residence to be about 500 m. The median personal RF-EMF exposure was 208 mV/m. Downlink contributed 40.4% of the total RF-EMF exposure, followed by broadcast (22.4%), uplink (17.3%), and Wi-Fi (15.9%). RF-EMF exposure levels on weekdays were higher than weekends ( < 0.05). Downlink and broadcast are the main contributors to total RF-EMF personal exposure. Personal RF-EMF exposure levels vary according to day of the week and time of day.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6211035 | PMC |
http://dx.doi.org/10.3390/ijerph15102234 | DOI Listing |
Environ Int
January 2025
Division Biotechnologies Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA) Rome Italy. Electronic address:
Bioelectromagnetics
January 2025
Bioelectromagnetics Laboratory, University of Wollongong, Wollongong, Australia.
In this paper, we present the design, RF-EMF performance, and a comprehensive uncertainty analysis of the reverberation chamber (RC) exposure systems that have been developed for the use of researchers at the University of Wollongong Bioelectromagnetics Laboratory, Australia, for the purpose of investigating the biological effects of RF-EMF in rodents. Initial studies, at 1950 MHz, have focused on investigating thermophysiological effects of RF exposure, and replication studies related to RF-EMF exposure and progression of Alzheimer's disease (AD) in mice predisposed to AD. The RC exposure system was chosen as it allows relatively unconstrained movement of animals during exposures which can have the beneficial effect of minimizing stress-related, non-RF-induced biological and behavioral changes in the animals.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Biophysics, Faculty of Medicine, Gazi University, Ankara, Turkey.
The widespread use of wireless communication technologies has increased human exposure to radiofrequency electromagnetic fields (RF-EMFs). Considering the brain's close proximity to mobile phones and its entirely electrical transmission network, it emerges as the organ most profoundly impacted by the RF field. This study aims to investigate the potential effects of RF radiation on cell viability, apoptosis, and gene expressions in glioblastoma cells (U118-MG) at different exposure times (1, 24, and 48 h).
View Article and Find Full Text PDFEnviron Int
January 2025
ICBE-EMF, International EMF Scientist Appeal, Electromagnetic Safety Alliance, USA.
Environ Int
January 2025
Department of Oncology and Molecular Medicine, National Institute of Health (Istituto Superiore di Sanità), Rome, Italy(2).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!