Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells.

Biosens Bioelectron

Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea; Tomocube, Inc., Daejeon 34051, Republic of Korea. Electronic address:

Published: January 2019

We present a rapid and label-free method for hematologic screening for diseases and syndromes, utilizing quantitative phase imaging (QPI) and machine learning. We aim to establish an efficient blood examination framework that does not suffer from the drawbacks of conventional blood assays, which are incapable of profiling single cells or require labeling procedures. Our method involves the synergistic employment of QPI and machine learning. The high-dimensional refractive index information arising from the QPI-based profiling of single red blood cells is processed to screen for diseases and syndromes using machine learning, which can utilize high-dimensional data beyond the human level. Accurate screening for iron-deficiency anemia, reticulocytosis, hereditary spherocytosis, and diabetes mellitus is demonstrated (>98% accuracy) using the proposed method. Furthermore, we highlight the synergy between QPI and machine learning in the proposed method by analyzing the performance of the method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.09.068DOI Listing

Publication Analysis

Top Keywords

machine learning
16
qpi machine
12
quantitative phase
8
phase imaging
8
red blood
8
blood cells
8
diseases syndromes
8
profiling single
8
proposed method
8
method
5

Similar Publications

The widespread use of pesticides, including diazinon, poses an increased risk of environmental pollution and detrimental effects on biodiversity, food security, and water resources. In this study, we investigated the impact of Potentially Toxic Elements (PTE) including Zn, Cd, V, and Mn on the degradation of diazinon in three different soils. We investigated the capability and performance of four machine learning models to predict residual pesticide concentration, including adaptive neuro-fuzzy inference system (ANFIS), support vector regression (SVR), radial basis function (RBF), and multi-layer perceptron (MLP).

View Article and Find Full Text PDF

Machine Learning Boosted Entropy-Engineered Synthesis of CuCo Nanometric Solid Solution Alloys for Near-100% Nitrate-to-Ammonia Selectivity.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122 Jiangsu, China.

Nanometric solid solution alloys are utilized in a broad range of fields, including catalysis, energy storage, medical application, and sensor technology. Unfortunately, the synthesis of these alloys becomes increasingly challenging as the disparity between the metal elements grows, due to differences in atomic sizes, melting points, and chemical affinities. This study utilized a data-driven approach incorporating sample balancing enhancement techniques and multilayer perceptron (MLP) algorithms to improve the model's ability to handle imbalanced data, significantly boosting the efficiency of experimental parameter optimization.

View Article and Find Full Text PDF

Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.

View Article and Find Full Text PDF

Health care decisions are increasingly informed by clinical decision support algorithms, but these algorithms may perpetuate or increase racial and ethnic disparities in access to and quality of health care. Further complicating the problem, clinical data often have missing or poor quality racial and ethnic information, which can lead to misleading assessments of algorithmic bias. We present novel statistical methods that allow for the use of probabilities of racial/ethnic group membership in assessments of algorithm performance and quantify the statistical bias that results from error in these imputed group probabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!