Ribosomal S6 kinase 1 (S6K1) and S6K2 proteins are effectors of the mammalian target of rapamycin complex 1 pathway, which control the process of protein synthesis in eukaryotes. S6K2 is associated with tumor progression and has a conserved C-terminus polyproline rich motif predicted to be important for S6K2 interactions. It is noteworthy that the translation of proteins containing sequential prolines has been proposed to be dependent of eukaryotic translation initiation factor 5A (eIF5A) translation factor. Therefore, we investigated the importance of polyproline-rich region of the S6K2 for its intrinsic phosphorylation activity, protein-protein interaction and eIF5A role in S6K2 translation. In HeLa cell line, replacing S6K2 polyproline by the homologous S6K1-sequence did not affect its kinase activity and the S6K2 endogenous content was maintained after eIF5A gene silencing, even after near complete depletion of eIF5A protein. Moreover, no changes in S6K2 transcript content was observed, ruling out the possibility of compensatory regulation by increasing the mRNA content. However, in the budding yeast model, we observed that S6K2 production was impaired when compared with S6K2∆Pro, after reduction of eIF5A protein content. These results suggest that although the polyproline region of S6K2 is capable of generating ribosomal stalling, the depletion of eIF5A in HeLa cells seems to be insufficient to cause an expressive decrease in the content of endogenous S6K2. Finally, coimmunoprecipitation assays revealed that the replacement of the polyproline motif of S6K2 alters its interactome and impairs its interaction with RPS6, a key modulator of ribosome activity. These results evidence the importance of S6K2 polyproline motif in the context of S6Ks function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.27888DOI Listing

Publication Analysis

Top Keywords

s6k2
13
region s6k2
8
s6k2 polyproline
8
depletion eif5a
8
eif5a protein
8
polyproline motif
8
eif5a
7
polyproline
5
content
5
polyproline-motif s6k2
4

Similar Publications

S6K2 in Focus: Signaling Pathways, Post-Translational Modifications, and Computational Analysis.

Int J Mol Sci

December 2024

Division of Cancer, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK.

S6 Kinase 2 (S6K2) is a key regulator of cellular signaling and is crucial for cell growth, proliferation, and survival. This review is divided into two parts: the first focuses on the complex network of upstream effectors, downstream modulators, and post-translational modifications (PTMs) that regulate S6K2 activity. We emphasize the dynamic nature of S6K2 regulation, highlighting its critical role in cellular homeostasis and its potential as a therapeutic target in diseases like cancer.

View Article and Find Full Text PDF

p21 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2.

Cancers (Basel)

November 2024

Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA.

: The ribosomal S6 kinase 2 (S6K2) acts downstream of the mechanistic target of rapamycin complex 1 and is a homolog of S6K1 but little is known about its downstream effectors. The objective of this study was to use an unbiased transcriptome profiling to uncover how S6K2 promotes breast cancer cell survival. : RNA-Seq analysis was performed to identify novel S6K2 targets.

View Article and Find Full Text PDF

Unlabelled: Intrinsic resistance to targeted therapeutics in PTEN-deficient glioblastoma (GBM) is mediated by redundant signaling networks that sustain critical metabolic functions. Here, we demonstrate that coordinated inhibition of the ribosomal protein S6 kinase 1 (S6K1) and the receptor tyrosine kinase AXL using LY-2584702 and BMS-777607 can overcome network redundancy to reduce GBM tumor growth. This combination of S6K1 and AXL inhibition suppressed glucose flux to pyrimidine biosynthesis.

View Article and Find Full Text PDF

Virus-Induced Histone Lactylation Promotes Virus Infection in Crustacean.

Adv Sci (Weinh)

August 2024

College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.

As "non-cellular organisms", viruses need to infect living cells to survive themselves. The virus infection must alter host's metabolisms. However, the influence of the metabolites from the altered metabolisms of virus-infected host cells on virus-host interactions remains largely unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!