A phase-resolved reflection-based near-field scanning optical microscopy (NSOM) technique with an original all-fiber configuration is presented. Our system consists of an intrinsically phase-stable common-path interferometer. The reflection from the waveguide input facet or from an integrated fiber Bragg grating is used as the reference beam. This arrangement effectively suppresses the phase drift caused by environmental fluctuations. By raster scanning a silicon atomic force microscope probe, we measure the complex near fields of the propagating and stationary waves in silicon nanowaveguides. Our robust, align-free, cost-effective, and shot-noise-limited near-field imaging technique paves the way for versatile optical characterizations of nanophotonic structures on a chip.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.004863DOI Listing

Publication Analysis

Top Keywords

phase drift
8
imaging guided
4
guided waves
4
waves all-fiber
4
all-fiber reflection-based
4
reflection-based nsom
4
nsom self-compensation
4
self-compensation phase
4
drift phase-resolved
4
phase-resolved reflection-based
4

Similar Publications

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.

View Article and Find Full Text PDF

Hydrogen, a sustainable and environmentally friendly fuel, can be obtained through the ethanol steam reforming (ESR) process. The most promising catalysts for this process are those based on non-noble metals such as cobalt. The activity, selectivity, and stability of these catalysts strongly depend on the presence of alkali dopants.

View Article and Find Full Text PDF

Tunable photoluminescence and energy transfer in Dy and Eu co-doped NaCaGd(WO) phosphors for pc-WLED applications.

Dalton Trans

January 2025

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, Glass Research and Development Laboratory, Istanbul, 34220, Türkiye.

Elevated temperatures can lead to reabsorption and color drift, compromising the quality of phosphor-converted white light-emitting diode (pc-WLED) devices. To ensure the performance of WLEDs under these conditions, it is essential to develop luminescent materials that maintain stable color. Consequently, there is a pressing need for single-phase white-emitting phosphors with robust chromatic stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!