The development of bioprocesses capable of producing large numbers of human induced pluripotent stem cells (hiPSC) in a robust and safe manner is critical for the application of these cells in biotechnological and medical applications. Scalable expansion of hiPSC is often performed using polystyrene microcarriers, which have to be removed from the cell suspension using a separation step that causes loss of viable cells. In this study, application of novel xeno-free dissolvable microcarriers (DM) for an efficient and integrated expansion and harvesting of hiPSC is demonstrated. After an initial screening under static conditions, hiPSC culture using DM is performed in dynamic culture, using spinner-flasks. A maximum 4.0 ± 0.8-fold expansion is achieved after 5 days of culture. These results are validated with a second cell line and the culture is successfully adapted to fully xeno-free conditions. Afterwards, cell recovery is made within the spinner flask, being obtained a 92 ± 4% harvesting yield, which is significantly higher than the one obtained for the conventional filtration-based method (45 ± 3%). Importantly, the expanded and harvested hiPSC maintain their pluripotency and multilineage differentiation potential. The results here described represent a significant improvement of the downstream processing after microcarrier-based hiPSC expansion, leading to a more cost-effective and efficient bioprocess.

Download full-text PDF

Source
http://dx.doi.org/10.1002/biot.201800461DOI Listing

Publication Analysis

Top Keywords

dissolvable microcarriers
8
scalable expansion
8
expansion harvesting
8
human induced
8
induced pluripotent
8
pluripotent stem
8
stem cells
8
xeno-free conditions
8
hipsc
6
expansion
5

Similar Publications

Introduction: To bring cultivated beef to the market, a scalable system that can support growth of bovine satellite cells (bSCs) in a serum-free and preferably also animal-free medium is of utmost importance. The use of microcarriers (MCs) is, at the moment, one of the most promising technologies for scaling up. MCs offer a large surface to volume ratio, they can be used in scalable stirred tank bioreactors, where the culture conditions can be tightly controlled to meet the cells' requirements (temperature, pH, dissolved oxygen).

View Article and Find Full Text PDF

Mesenchymal stem and stromal cells (MSCs) hold potential to treat a broad range of clinical indications, but clinical translation has been limited to date due in part to challenges with batch-to-batch reproducibility of potential critical quality attributes (pCQAs) that can predict potency/efficacy. Here, we designed and implemented a microcarrier-microbioreactor approach to cell therapy manufacturing, specific to anchorage-dependent cells such as MSCs. We sought to assess whether increased control of the biochemical and biophysical environment had the potential to create product with consistent presentation and elevated expression of pCQAs relative to established manufacturing approaches in tissue culture polystyrene (TCPS) flasks.

View Article and Find Full Text PDF

Dual production of human mesenchymal stromal cells and derived extracellular vesicles in a dissolvable microcarrier-based stirred culture system.

Cytotherapy

July 2024

Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. Electronic address:

Background & Aims: Cell therapies based on mesenchymal stromal cells (MSCs) have gained an increasing therapeutic interest in the context of multiple disorders. Nonetheless, this field still faces important challenges, particularly concerning suitable manufacturing platforms. Here, we aimed at establishing a scalable culture system to expand umbilical cord-derived Wharton's jelly MSC (MSC(WJ)) and their derived extracellular vesicles (EVs) by using dissolvable microcarriers combined with xeno(geneic)-free culture medium.

View Article and Find Full Text PDF

Researchers in the cell and gene therapy (CGT) industry have long faced a formidable challenge in the efficient and large-scale expansion of cells. To address the primary shortcomings of the two-dimensional (2D) planar culturing system, we innovatively developed an automated closed industrial scale cell production (ACISCP) platform based on a GMP-grade, dissolvable, and porous microcarrier for the 3D culture of adherent cells, including human mesenchymal stem/stromal cells (hMSCs), HEK293T cells, and Vero cells. To achieve large-scale expansion, a two-stage expansion was conducted with 5 L and 15 L stirred-tank bioreactors to yield 1.

View Article and Find Full Text PDF

Large-Scale Expansion of Umbilical Cord Mesenchymal Stem Cells with Microcarrier Tablets in Bioreactor.

Methods Mol Biol

March 2022

Department of Biomedical Engineering, School of Medicine, Tsinghua-PKU Center for Life Sciences, Tsinghua University, Beijing, China.

Mesenchymal stem cells show great potential in tissue engineering and cell-based therapies. This protocol demonstrates the use of 3D TableTrix microcarrier tablets for large-scale manufacturing of human umbilical cord mesenchymal stem cells (hUCMSCs) in a 5-L stirred tank bioreactor. 3D TableTrix microcarrier tablets readily disperse into tens of thousands of porous microcarriers to simplify cell seeding, and 3D FloTrix vivaSPIN bioreactor could automate, monitor, and control the entire culture process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!