Hair follicle stem cells (HFSC) are localized in the bulge region of the hair follicle and play a role in producing hair. Recently, it has been shown that the number of HFSC decreases with age, which is thought to be a cause of senile alopecia. Therefore, maintaining HFSC may be key for the prevention of age-related hair loss, but the regulatory mechanisms of HFSC and the effects of aging on them are largely unknown. In general, stem cells are known to require regulatory factors in the pericellular microenvironment, termed the stem cell niche, to maintain their cell function. In this study, we focused on the extracellular matrix proteoglycan decorin (DCN) as a candidate factor for maintaining the human HFSC niche. Gene expression analysis showed that DCN was highly expressed in the bulge region. We observed decreases in DCN expression as well as the number of KRT15-positive HFSC with age. In vitro experiments with human plucked hair-derived HFSC revealed that HFSC lost their undifferentiated state with increasing passages, and prior to this change a decrease in DCN expression was observed. Furthermore, knockdown of DCN promoted HFSC differentiation. In contrast, when HFSC were cultured on DCN-coated plates, they showed an even more undifferentiated state. From these results, as a novel mechanism for maintaining HFSC, it was suggested that DCN functions as a stem cell niche component, and that the deficit of HFSC maintenance caused by a reduction in DCN expression could be a cause of age-related hair loss.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1346-8138.14678DOI Listing

Publication Analysis

Top Keywords

hair follicle
12
stem cells
12
hfsc
12
dcn expression
12
proteoglycan decorin
8
follicle stem
8
bulge region
8
maintaining hfsc
8
age-related hair
8
hair loss
8

Similar Publications

Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.

Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.

View Article and Find Full Text PDF

Hair follicle cells reside within a complex extracellular matrix (ECM) environment in vivo, where physical and chemical cues regulate their behavior. The ECM is crucial for hair follicle development and regeneration, particularly through epithelial-mesenchymal interactions. Current in vitro models often fail to replicate this complexity, leading to inconsistencies in evaluating hair loss treatments.

View Article and Find Full Text PDF

Resveratrol-Loaded Versatile Nanovesicle for Alopecia Therapy via Comprehensive Strategies.

Int J Nanomedicine

December 2024

School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China.

Introduction: Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation.

View Article and Find Full Text PDF

Relationship between fiber quality and follicle density in Ch'aku llamas (Lama glama).

Trop Anim Health Prod

December 2024

Faculty of Veterinary Medicine and Animal Science, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Perú.

In the high altitudes of the Andes, llama breeders shear the fiber from their animals, obtaining fleeces for many purposes. Dehairing the fleece of these animals is a viable alternative to improving the quality and value of the fleece. The study examined the attributes of fiber quality and pilose follicle of dehaired and non-dehaired fleece from Ch'aku llamas and the relationship among these characteristics.

View Article and Find Full Text PDF

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!