A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The RbSr Σ ground state investigated via spectroscopy of hot and ultracold molecules. | LitMetric

We report on spectroscopic studies of hot and ultracold RbSr molecules, and combine the results in an analysis that allows us to fit a potential energy curve (PEC) for the X(1)Σ ground state bridging the short-to-long-range domains. The ultracold RbSr molecules are created in a μK sample of Rb and Sr atoms and probed by two-colour photoassociation spectroscopy. The data yield the long-range dispersion coefficients C and C, along with the total number of supported bound levels. The hot RbSr molecules are created in a 1000 K gas mixture of Rb and Sr in a heat-pipe oven and probed by thermoluminescence and laser-induced fluorescence spectroscopy. We compare the hot molecule data with spectra we simulated using previously published PECs determined by three different ab initio theoretical methods. We identify several band heads corresponding to radiative decay from the B(2)Σ state to the deepest bound levels of X(1)Σ. We determine a mass-scaled high-precision model for X(1)Σ by fitting all data using a single fit procedure. The corresponding PEC is consistent with all data, thus spanning short-to-long internuclear distances and bridging an energy gap of about 75% of the potential well depth, still uncharted by any experiment. We benchmark previous ab initio PECs against our results, and give the PEC fit parameters for both X(1)Σ and B(2)Σ states. As first outcomes of our analysis, we calculate the s-wave scattering properties for all stable isotopic combinations and corroborate the locations of Fano-Feshbach resonances between alkali Rb and closed-shell Sr atoms recently observed [V. Barbéet al., Nat. Phys., 2018, 14, 881]. These results and more generally our strategy should greatly contribute to the generation of ultracold alkali-alkaline-earth dimers, whose applications range from quantum simulation to state-controlled quantum chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp03919dDOI Listing

Publication Analysis

Top Keywords

rbsr molecules
12
ground state
8
hot ultracold
8
ultracold rbsr
8
molecules created
8
bound levels
8
rbsr
4
rbsr ground
4
state investigated
4
investigated spectroscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!