NIR-Light-Active ZnO-Based Nanohybrids for Bacterial Biofilm Treatment.

ACS Omega

Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.

Published: September 2018

AI Article Synopsis

  • Nanomaterials like ZnO-SQ nanohybrids, activated by near-infrared light, show promise in combating antibiotic-resistant bacteria by disrupting cellular mechanisms.
  • The use of squaraine dye enhances the generation of reactive oxygen species (ROS), leading to a significant 95% reduction in bacterial viability and effective biofilm disruption.
  • Microscopic analysis reveals that these nanohybrids cause structural damage to bacterial cells and decrease biofilm adherence when applied to artificial medical implants.

Article Abstract

Nanomaterials with antimicrobial properties triggered by external stimuli appear to be a promising and innovative substitute for the destruction of antibiotic-resistant superbugs as they can induce multiple disruptions in the cellular mechanism. This study demonstrates the use of squaraine (SQ) dye as the photosensitive material, activated in the near-infrared tissue-transparent therapeutic window. The dye has been covalently attached to the ZnO nanoparticle surface, forming ZnO-SQ nanohybrids. The formation of the nanohybrids is confirmed using Fourier transform infrared and other optical spectroscopic methods. The photoinduced interfacial electron transfer process (as confirmed using the time-resolved fluorescence technique) from the excited state of SQ to the conduction band of ZnO is responsible for the greater reactive oxygen species (ROS) generation ability of the nanohybrid. The production of photoactivated ROS (especially singlet oxygen species) by ZnO-SQ provides remarkable antimicrobial action against clinically significant . Detailed investigations suggest synergistic involvement of cell membrane disruption and nanoparticle internalization followed by photoinduced intracellular ROS generation, which result in an unprecedented 95% bacterial killing activity by the nanohybrid. Moreover, the efficacy of the nanohybrid for disruption of bacterial biofilms has been examined. The electron microscopic images suggest significant bacterial cell death following structural alteration and reduced adherence property of the biofilms. Nanodimension-driven greater internalization of ZnO-SQ followed by an improved dissolution of ZnO in an acidic environment of the biofilm as well as red-light-driven interfacial charge separation and ROS generation improves the efficacy of the material for biofilm destruction. An artificial medical implant mimicking titanium sheets coated with ZnO-SQ depicts light-triggered disruption in the adherence property of matured biofilms. The cytotoxicity and hemolysis assays show inherent biocompatibility of the photoactive nanohybrid. This study is notably promising for the treatment of life-threatening drug-resistant infections and eradication of biofilms formed within artificial implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173506PMC
http://dx.doi.org/10.1021/acsomega.8b00716DOI Listing

Publication Analysis

Top Keywords

ros generation
12
oxygen species
8
adherence property
8
nir-light-active zno-based
4
zno-based nanohybrids
4
bacterial
4
nanohybrids bacterial
4
bacterial biofilm
4
biofilm treatment
4
treatment nanomaterials
4

Similar Publications

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

The role of ferroptosis in liver injury after cold ischemia-reperfusion in rats with autologous orthotopic liver transplantation.

J Artif Organs

January 2025

Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China.

Using autologous orthotopic liver transplantation (AOLT) model in rats, the effect of lipid reactive oxygen species (L-ROS) inhibitor Ferrostain-1 on ferroptosis signal pathway was observed to determine whether ferroptosis occurred in rat liver injury after cold ischemia-reperfusion (I/R). Thirty-two healthy adult SPF male SD rats, 8 ~ 10 weeks old, weight 240 ~ 260 g, were divided into four groups by the method of random number table (n = 8): sham group, I/R group, I/R + Fer-1 group, I/R + DFO group. In the I/R + Fer-1 group, ferristatin-1(5 mg /kg) was intraperitoneally injected 30 min before surgery; in the I/R + DFO group, DFO 100 mg/kg was injected intraperitoneally 1 h before operation and 12 h after operation.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) generated by oxidative stress have emerged as critical factors in the pathophysiology of malignancies. This study investigated the antioxidant and anticancer properties of zinc (Zn), selenium (Se), and silver (Ag) nanoparticles (NPs) against the A2780 human ovarian cancer cell line. Here, the bioinformatics approach was used to determine the top differentially expressed genes associated with oxidative stress.

View Article and Find Full Text PDF

In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.

View Article and Find Full Text PDF

Transmembrane proteins (TMPs) are pivotal components of plant defence mechanisms, serving as essential mediators in the response to biotic stresses. These proteins are among the most complex and diverse within plant cells, making their study challenging. In spite of this, relatively few studies have focused on the investigation and characterization of TMPs in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!