Aims: The aims of the present work are (1) to evaluate dose calculation accuracy of two commonly used algorithms for 15 MV small photon fields in a medium encompassing heterogeneity and (2) to compare them with measured results obtained from gafchromic film EBT2.
Materials And Methods: Authors employed kailwood (Pinus Wallichiana) to mimic lung. Briefly, seven Kailwood plates, each measuring 25x25 cm of varying thicknesses totaling 13 cm equivalent to the mean thickness of an adult human lung, were sandwiched between 5 cm tissue equivalent material from top and 10 cm below. Physical measurements were performed using Radiochromic film EBT2. The field sizes of 1x1, 2x2, 5x5 and 10x10 cm were selected at 100 cm SSD. Simulations were performed using EGSnrc/DOSRZnrc Monte Carlo code. The dose variation inside the inhomogeneity and near the interface was calculated using AAA & XVMC algorithm.
Results: Preliminary results show that there is large variation of dose inside inhomogeneity. The maximum variation of dose inside the inhomogeneity for 1x1 cm was found 40% by AAA and 4.5% by XVMC compared to measured/simulated results. For the field size of 2x2 cm, these figures were 27% by AAA & 3.5% by XVMC. For 5x5 cm field size, the variation is small which becomes insignificant for larger fields.
Conclusion: The results presented in this work indicate that for smaller fields, XVMC algorithm gives more realistic prediction, while there is the need for caution on using AAA algorithm for dose calculations involving small area irradiation encompassing heterogeneities and low-density media.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169117 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!