A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling Spatio-temporal Malaria Risk Using Remote Sensing and Environmental Factors. | LitMetric

Modeling Spatio-temporal Malaria Risk Using Remote Sensing and Environmental Factors.

Iran J Public Health

Institute of Geographic Information Systems, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad, Pakistan.

Published: September 2018

Background: Remote sensing have been intensively used across many disciplines, however, such information was limited in spatial epidemiology.

Methods: Two years (2009 & 2010) Landsat TM satellite data was used to develop vegetation, water bodies, air temperature and humidity criterion maps to model malaria risk and its spatiotemporal seasonal variation. The criterion maps were used in weighted overlay analysis to generate final categorized malaria risk map.

Results: Overall, 25%, 68%, 18% and 16% of the total area of Rawalpindi region was categorized as danger zone for Jun 2009, Oct 2009, Jan 2010 and Jun 2010, respectively. The malaria risk reached at its peak during the monsoon season whereas air temperature and relative humidity were the main contributing factors in seasonal variation.

Conclusion: Malaria risk maps could be used for prioritizing areas for malaria control measures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174038PMC

Publication Analysis

Top Keywords

malaria risk
20
remote sensing
8
air temperature
8
criterion maps
8
malaria
6
risk
5
modeling spatio-temporal
4
spatio-temporal malaria
4
risk remote
4
sensing environmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!