Diabetic retinopathy (DR) is a leading cause of blindness worldwide. However, 90% of DR caused blindness can be prevented if diagnosed and intervened early. Retinal exudates can be observed at the early stage of DR and can be used as signs for early DR diagnosis. Deep convolutional neural networks (DCNNs) have been applied for exudate detection with promising results. However, there exist two main challenges when applying the DCNN based methods for exudate detection. One is the very limited number of labeled data available from medical experts, and another is the severely imbalanced distribution of data of different classes. First, there are many more images of normal eyes than those of eyes with exudates, particularly for screening datasets. Second, the number of normal pixels (non-exudates) is much greater than the number of abnormal pixels (exudates) in images containing exudates. To tackle the small sample set problem, an ensemble convolutional neural network (MU-net) based on a U-net structure is presented in this paper. To alleviate the imbalance data problem, the conditional generative adversarial network (cGAN) is adopted to generate label-preserving minority class data specifically to implement the data augmentation. The network was trained on one dataset (e_ophtha_EX) and tested on the other three public datasets (DiaReTDB1, HEI-MED and MESSIDOR). CGAN, as a data augmentation method, significantly improves network robustness and generalization properties, achieving F1-scores of 92.79%, 92.46%, 91.27%, and 94.34%, respectively, as measured at the lesion level. While without cGAN, the corresponding F1-scores were 92.66%, 91.41%, 90.72%, and 90.58%, respectively. When measured at the image level, with cGAN we achieved the accuracy of 95.45%, 92.13%, 88.76%, and 89.58%, compared with the values achieved without cGAN of 86.36%, 87.64%, 76.33%, and 86.42%, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179403PMC
http://dx.doi.org/10.1364/BOE.9.004863DOI Listing

Publication Analysis

Top Keywords

conditional generative
8
generative adversarial
8
adversarial network
8
convolutional neural
8
exudate detection
8
data augmentation
8
level cgan
8
data
6
network
5
cgan
5

Similar Publications

Dental manifestations of hypophosphatasia: translational and clinical advances.

JBMR Plus

February 2025

Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, United States.

Hypophosphatasia (HPP) is an inherited error in metabolism resulting from loss-of-function variants in the gene, which encodes tissue-nonspecific alkaline phosphatase (TNAP). TNAP plays a crucial role in biomineralization of bones and teeth, in part by reducing levels of inorganic pyrophosphate (PP), an inhibitor of biomineralization. HPP onset in childhood contributes to rickets, including growth plate defects and impaired growth.

View Article and Find Full Text PDF

Inpp5e Is Critical for Photoreceptor Outer Segment Maintenance.

J Cell Sci

January 2025

Program in Molecular Medicine, University of Massachusetts Chan Medical School, Suite 213 Biotech II, 373 Plantation Street, Worcester MA 01605, USA.

In humans, inositol polyphosphate-5-phosphatase e (INPP5E) mutations cause retinal degeneration as part of Joubert and MORM syndromes and can also cause non-syndromic blindness. In mice, mutations cause a spectrum of brain, kidney, and other anomalies and prevent the formation of photoreceptor outer segments. To further explore the function of Inpp5e in photoreceptors, we generated conditional and inducible knockouts of mouse Inpp5e where the gene was deleted either during outer segment formation or after outer segments were fully formed.

View Article and Find Full Text PDF

The ABC transporter A7 modulates neuroinflammation via NLRP3 inflammasome in Alzheimer's disease mice.

Alzheimers Res Ther

January 2025

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo, NO-0372, Norway.

Background: Specific genetic variants in the ATP-binding cassette transporter A7 locus (ABCA7) are associated with an increased risk of Alzheimer's disease (AD). ABCA7 transports lipids from/across cell membranes, regulates Aβ peptide processing and clearance, and modulates microglial and T-cell functions to maintain immune homeostasis in the brain. During AD pathogenesis, neuroinflammation is one of the key mechanisms involved.

View Article and Find Full Text PDF

METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.

View Article and Find Full Text PDF

Wnt7a-Cre is a commonly used for generating uterine epithelial conditional knockout mice, such as epiERα-/- (Esr1f/-Wnt7aCre/+) and epiPR-/- (Pgrf/-Wnt7aCre/+). We noticed that epiERα-/- females, but not epiPR-/- females, have prolonged plugging latency, which is the duration between continuous cohabitation and detection of the first vaginal plug (a sign of mating). Mating occurs in proestrus and/or estrus stages of the estrous cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!