Ammonia-oxidizing bacteria (AOB) and archaea (AOA) play important roles in nitrogen removal in aquaculture ponds, but their distribution and the environmental factors that drive their distribution are largely unknown. In this study, we collected surface sediment samples from ponds in three different areas in China that practice aquaculture. The community structure of AOB and AOA and physicochemical characteristics in the ponds were investigated. The results showed that AOA were more abundant than AOB in all sampling ponds except one, but sediment AOB and AOA numbers varied greatly between ponds. Correlation analyses indicated a significant correlation between the abundance of AOB and arylsulfatase, as well as the abundance of AOA and total nitrogen (TN) and arylsulfatase. In addition, AOB/AOA ratio was found to be significantly correlated with the microbial biomass carbon. AOB were grouped into seven clusters affiliated to and , and AOA were grouped into six clusters affiliated to , sister group, and . AOB/AOA diversity in the surface sediments of aquaculture ponds varied according to the levels of total organic carbon (TOC), and AOB and AOA diversity was significantly correlated with arylsulfatase and β-glucosidase, respectively. The compositions of the AOB communities were also found to be significantly influenced by sediment eutrophic status (TOC and TN levels), and pH. In addition, concentrations of acid phosphatase and arylsulfatase in surface sediments were significantly correlated with the prominent bacterial genotypes, and concentrations of TOC and urease were found to be significantly correlated with the prominent archaeal genotype compositions. Taken together, our results indicated that AOB and AOA communities in the surface sediments of aquaculture ponds are regulated by organic matter and its availability to the microorganisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165866 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.02290 | DOI Listing |
Ocean surface temperatures and the frequency and intensity of marine heatwaves are increasing worldwide. Understanding how marine organisms respond and adapt to heat pulses and the rapidly changing climate is crucial for predicting responses of valued species and ecosystems to global warming. Here, we carried out an in situ experiment to investigate sublethal responses to heat spikes of a functionally important intertidal bivalve, the venerid clam Austrovenus stutchburyi.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States.
Historic copper mining left a legacy of metal-rich tailings resulting in ecological impacts along and within Torch Lake, an area of concern in the Keweenaw Peninsula, Michigan, USA. Given the toxicity of copper to invertebrates, this study assessed the influence of this legacy on present day nearshore aquatic and terrestrial ecosystems. We measured the metal (Co, Cu, Ni, Zn, Cd) and metalloid (As) concentrations in sediment, pore water, surface water, larval and adult insects, and two riparian spider taxa collected from Torch Lake and a nearby reference lake.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Biological Systems Engineering, Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA.
The hydrologic benefits of catchment-scale implementation of stormwater control measures (SCMs) in mitigating the adverse effects of urbanization are well established. Nevertheless, recent studies indicate that the Unified Stormwater Sizing Criteria (USSC) regulations, mandating the combined use of distributed and storage stormwater controls, do not protect channel stability, despite their effectiveness in reducing runoff from impervious surfaces. The USSC are the basis of SCM design in 11 U.
View Article and Find Full Text PDFWetlands (Wilmington)
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada.
There are increasing global efforts and initiatives aiming to tackle climate change and mitigate its impacts via natural climate solutions (NCS). Wetlands have been considered effective NCS given their capacity to sequester and retain atmospheric carbon dioxide (CO) while also providing a myriad of other ecosystem functions that can assist in mitigating the impacts of climate change. However, wetlands have a dual impact on climate, influencing the atmospheric concentrations of both CO and methane (CH).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!