The aqueous self-assembly behavior of a series of poly(ethylene glycol)-poly(l-/d-lactide) block copolymers and corresponding stereocomplexes is examined by differential scanning calorimetry, dynamic light scattering, and transmission electron microscopy. Block copolymers assemble into spherical micelles and worm-like aggregates at room temperature, whereby the fraction of the latter seemingly increases with decreasing lactide weight fraction or hydrophobicity. The formation of the worm-like aggregates arises from the crystallization of the polylactide by which the spherical micelles become colloidally unstable and fuse epitaxically with other micelles. The self-assembly behavior of the stereocomplex aggregates is found to be different from that of the block copolymers, resulting in rather irregular-shaped clusters of spherical micelles and pearl-necklace-like structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.201800639 | DOI Listing |
Food Chem
January 2025
State Key Laboratory for Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:
Heavy metals and mycotoxins are important contaminants in food pollution. Sensitive, reliable, and rapid detection of heavy metals and mycotoxins is crucial for human health. In this work, imidazole-functionalized aggregation-induced emission (AIE) molecule tetra-(4-pyridylphenyl) ethylene (TPPE) was used as a precise and specific probe for Ag detection, with a limit of detection (LOD) of 0.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China.
The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFBiomacromolecules
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.
View Article and Find Full Text PDFBeilstein J Org Chem
January 2025
Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
Polysarcosine emerges as a promising alternative to polyethylene glycol (PEG) in biomedical applications, boasting advantages in biocompatibility and degradability. While the self-assembly behavior of block copolymers containing polysarcosine-containing polymers has been reported, their potential for shape transformation remains largely untapped, limiting their versatility across various applications. In this study, we present a comprehensive methodology for synthesizing, self-assembling, and transforming polysarcosine-poly(benzyl glutamate) block copolymers, resulting in the formation of bowl-shaped vesicles, disks, and stomatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!