Portal hypertension (PH) is the main driver of cirrhosis decompensation, the main determinant of death in patients with cirrhosis. PH results initially from increased intrahepatic vascular resistance. Subsequently, increased inflow from splanchnic vasodilation and increased cardiac output lead to a further increase in portal pressure (PP). Reducing PP in cirrhosis results in better outcomes. Removing the cause of cirrhosis might improve PP. However, this is a slow process and patients may continue to be at risk of decompensation. Additionally, for some chronic liver diseases, such as nonalcoholic fatty liver disease (NAFLD), etiological treatments are not yet available. Therefore, there is a need to develop better therapies specifically aimed at reducing PP. For over 35 years, the mainstay of such therapy has been the use of nonselective beta-blockers (NSBBs) that act by reducing portal venous inflow. Recently, many drugs (mainly targeting intrahepatic mechanisms) have shown promise in preclinical and early clinical studies and may act alone or synergistically with NSBBs in reducing PP in cirrhosis. The objective of this position paper is to propose a novel framework for the design of clinical trials (phase 1, 2, and 3) in patients with cirrhosis and PH and to prioritize targets and pharmacological therapies in this setting. We have focused the discussion on patients with compensated cirrhosis. The paper summarizes discussions held at The American Association for the Study of Liver Diseases (AASLD) Industry Colloquium in January 2018, with the participation of clinical and translational investigators, regulatory professionals, and industry partners.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090176PMC
http://dx.doi.org/10.1002/hep.30314DOI Listing

Publication Analysis

Top Keywords

portal hypertension
8
patients cirrhosis
8
reducing cirrhosis
8
liver diseases
8
nsbbs reducing
8
cirrhosis
7
prioritization therapeutic
4
therapeutic targets
4
targets trial
4
trial design
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!