Extremely large vibrational amplitude (≈8700 a.u.) heavy Rydberg levels in the HH[combining macron]1Σ+g state, located only 25 cm-1 below the ion-pair dissociation limit, are reported. The calculations are done using a hybrid log derivative/multichannel quantum defect approach that accounts for predissociation and is capable of dealing with any number of long-range closed channels, and of providing positions and widths for the heavy Rydberg resonances. In this case, resonance positions can be reproduced qualitatively using a simple diabatic model (however, the resonance widths cannot). Absolute quantum defects are derived for the vibrational series ranging from ν = 0 to ν = 2010. The influence of the Coulomb potential and continuity of heavy Rydberg behavior throughout the 1Σ+g manifold of states is demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8fd00096d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!