Reciprocity [1] is one of the most controversial evolutionary explanations of cooperation among non-kin [2, 3]. For some authors, cognitive capacity of non-human organisms is limiting, and more parsimonious mechanisms should apply [3-5]; for others, the debate is mainly semantic [2, 6], and empirical evidence can be found in a wide range of taxa [7]. However, while the ability to alternate cooperative behaviors does not settle the reciprocity controversy, the capacity to adjust cooperative behavior to the value of received help could prove decisive. Marine polychaete worms Ophryotrocha diadema, as several simultaneous hermaphrodites, do not self-fertilize and have unilateral mating (i.e., they behave either as females or as males during each mating event). They are also external fertilizers and thus cannot store allosperm, which contribute to make them ideal model organisms to investigate reciprocity, since partners usually alternate sexual roles with each other, repeatedly exchanging egg clutch of variable size [8-12]. However, whether the alternation of sexual roles is the result of conditional reciprocity rather than by-product reciprocity has never been tested [13]. Here, we show that O. diadema worms reciprocate eggs conditionally to the partner's behavior and adjust the quality of cooperation according to that of their partners. Moreover, only egg reciprocation offers similar fitness returns via both the female and the male function with respect to non-reciprocating laying strategies. These results document that fine-tuned forms of conditional reciprocity can emerge in cognitively unsophisticated animals, broadening the criteria to recognize conditional reciprocity among animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2018.08.013 | DOI Listing |
Exp Neurol
December 2024
Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA; Department of Neurological Sciences and Neuroscience Graduate Program, University of Vermont, Burlington, VT 05401, USA. Electronic address:
Reciprocal communication between reactive astrocytes and microglial cells provides local, coordinated control over critical processes such as neuroinflammation, neuroprotection, and scar formation after CNS injury, but is poorly understood. The vasoactive peptide hormone endothelin (ET) is released and/or secreted by endothelial cells, microglial cells and astrocytes early after ischemic stroke and other forms of brain injury. To better understand glial cell communication after stroke, we sought to identify paracrine effectors produced and secreted downstream of astroglial endothelin receptor B (ETB) signaling.
View Article and Find Full Text PDFCell Signal
December 2024
Department of Maxillofacial and Otorhinolaryngology Oncology and Department of Head and Neck Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China; Tianjin Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China. Electronic address:
Nerves are often overlooked as key components of the tumor microenvironment. However, the molecular mechanisms underlying the reciprocal interactions between tumors and nerves remain largely unknown. In this study, we analyzed data from The Cancer Genome Atlas (TCGA) and identified a significant association between DKK1 expression and poor prognosis, as well as a correlation between DKK1 expression and myeloid-derived suppressor cell (MDSC) infiltration in head and neck squamous cell carcinoma (HNSCC) and pancreatic ductal adenocarcinoma (PDAC), two cancer types characterized by pronounced tumor-nerve interactions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Max Planck Research Group Dynamics of Social Behavior, Max Planck Institute for Evolutionary Biology, Plön 24306, Germany.
Direct reciprocity is a wide-spread mechanism for the evolution of cooperation. In repeated interactions, players can condition their behavior on previous outcomes. A well-known approach is given by reactive strategies, which respond to the coplayer's previous move.
View Article and Find Full Text PDFArch Oral Biol
January 2025
Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, USA; Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, Osaka, Japan. Electronic address:
Objective: Bone homeostasis relies on several contributing factors, encompassing growth factors and mechanical stimuli. While bone morphogenetic protein (BMP) signaling is acknowledged for its essential role in skeletal development, its specific impact on mandibular morphogenesis remains unexplored. Here, we investigated the involvement of BMP signaling and mechanical loading through mastication in postnatal mandibular morphogenesis.
View Article and Find Full Text PDFEntropy (Basel)
August 2024
Computational Science Lab, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
The foreign exchange (FX) market has evolved into a complex system where locally generated information percolates through the dealer network via high-frequency interactions. Information related to major events, such as economic announcements, spreads rapidly through this network, potentially inducing volatility, liquidity disruptions, and contagion effects across financial markets. Yet, research on the mechanics of information flows in the FX market is limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!