The study of strial pericytes has gained great interest as they are pivotal for the physiology of stria vascularis. To provide an easily accessible in vitro model, here we described a growth medium-based approach to obtain and cultivate primary bovine cochlear pericytes (BCP) from the stria vascularis of explanted bovine cochleae. We obtained high-quality pericytes in 8-10 days with a > 90% purity after the second passage. Immunocytochemical analysis showed a homogeneous population of cells expressing typical pericyte markers, such as neural/glial antigen 2 (NG2), platelet-derived growth factor receptorβ (PDGFRβ), α-smooth muscle actin (α-SMA), and negative for the endothelial marker von Willebrand factor. When challenged with tumor necrosis factor or lipopolysaccharide, BCP changed their shape, similarly to human retinal pericytes (HRPC). The sensitivity of BCP to ototoxic drugs was evaluated by challenging with cisplatin or gentamicin for 48 hr. Compared to human retinal endothelial cells and HRPC, cell viability of BCP was significantly lower ( p < 0.05) after the treatment with gentamicin or cisplatin. These data indicate that our protocol provides a simple and reliable method to obtain highly pure strial BCP. Furthermore, BCP are suitable to assess the safety profile of molecules which supposedly exert ototoxic activity, and may represent a valid alternative to in vivo tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.27545 | DOI Listing |
Tissue Cell
December 2024
ENT Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. Electronic address:
Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
December 2024
Department of Otorhinolaryngology, Gazi University Faculty of Medicine, Ankara, Turkey.
Objective: This study aimed to attenuate cochlear inflammation following noise-induced hearing loss by targeting IL-1. We evaluated the effectiveness of IL-1 inhibition through auditory and histological assessments in an animal model.
Study Design: Experimental animal study.
Background: Hearing loss affects over 10% of the global population. Inflammation is a key factor in hearing loss caused by noise, infection, and aging, damaging various hearing-related tissues (e.g.
View Article and Find Full Text PDFIndian Dermatol Online J
September 2024
Department of ENT and Head and Neck Surgery, All India Institute of Medical Sciences, Guntur, Andhra Pradesh, India.
Background: Melanocytes in the hair and melanocytes in the stria vascularis of the inner ear have common origins. Many congenital and acquired disorders of cutaneous pigmentation have auditory abnormalities. There is a paucity of studies on the auditory associations of early graying.
View Article and Find Full Text PDFNeuroradiol J
November 2024
Department of Radiology, Massachusetts General Hospital, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!