Human mesenchymal stem cells (hMSCs) are fibroblastoid multipotent adult stem cells with capacities of differentiation into osteoblasts and chondrocytes and show great potential in new bone formation and bone repair-related clinical settings, such as osteoporosis. Long noncoding RNAs (lncRNAs) have been demonstrated to play important roles in various biological processes. Here, we report an antisense lncRNA SEMA3B-AS1 regulating hMSCs osteogenesis. SEMA3B-AS1 is proximal to a member of the semaphorin family Sema3b. Overexpression of SEMA3B-AS1 using the lentivirus system markedly inhibits the proliferation of hMSCs and meanwhile reduces osteogenic differentiation. Using a comprehensive proteomic technique named isobaric tag for relative and absolute quantitation, we found that SEMA3B-AS1 significantly alters the process of osteogenesis through downregulating the expression of proteins involved in actin cytoskeleton, focal adhesion, and extracellular matrix-receptor interaction, while increasing the expression of proteins in the spliceosome. Collectively, we find that SEMA3B-AS1 is a target for controlling osteogenesis of hMSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26776DOI Listing

Publication Analysis

Top Keywords

stem cells
12
osteogenic differentiation
8
human mesenchymal
8
mesenchymal stem
8
expression proteins
8
sema3b-as1
5
sema3b-as1-inhibited osteogenic
4
differentiation human
4
cells revealed
4
revealed quantitative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!