Nanoscale characterization coupled to multi-parametric optimization of Hi5 cell transient gene expression.

Appl Microbiol Biotechnol

Departament d'Enginyeria Química, Biológica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Published: December 2018

Polyethylenimine (PEI)-based transient gene expression (TGE) is nowadays a well-established methodology for rapid protein production in mammalian cells, but it has been used to a much lower extent in insect cell lines. A fast and robust TGE methodology for suspension Hi5 (Trichoplusia ni) cells is presented. Significant differences in size and morphology of DNA:PEI polyplexes were observed in the different incubation solutions tested. Moreover, minimal complexing time (< 1 min) between DNA and PEI in 150 mM NaCl solution provided the highest transfection efficiency. Nanoscopic characterization by means of cryo-EM revealed that DNA:PEI polyplexes up to 300-400 nm were the most efficient for transfection. TGE optimization was performed using eGFP as model protein by means of the combination of advanced statistical designs. A global optimal condition of 1.5 × 10 cell/mL, 2.1 μg/mL of DNA, and 9.3 μg/mL PEI was achieved through weighted-based optimization of transfection, production, and viability responses. Under these conditions, a 60% transfection and 0.8 μg/10 transfected cell·day specific productivity were achieved. The TGE protocol developed for Hi5 cells provides a promising baculovirus-free and worthwhile approach to produce a wide variety of recombinant proteins in a short period of time.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-018-9423-5DOI Listing

Publication Analysis

Top Keywords

transient gene
8
gene expression
8
dnapei polyplexes
8
nanoscale characterization
4
characterization coupled
4
coupled multi-parametric
4
multi-parametric optimization
4
optimization hi5
4
hi5 cell
4
cell transient
4

Similar Publications

CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction.

Plant Cell Environ

December 2024

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.

Low temperature is a limiting environmental factor for tea plant growth and development. CBL-interacting protein kinases (CIPKs) are important components of the calcium pathway and involved in plant development and stress responses. Herein, we report the function and regulatory mechanisms of a low-temperature-inducible gene, CsCIPK20, in tea plants.

View Article and Find Full Text PDF

A previously healthy 32-year-old male patient was admitted to hospital with malaise, dyspnea, anemia, thrombocytopenia, and leukopenia. Anemia and thrombocytopenia worsened during the third week. Considering the possible need for transfusion, routine ABO and D typing and an antibody detection test were performed.

View Article and Find Full Text PDF

In eukaryotes, Target of Rapamycin (TOR), a conserved protein sensor kinase, integrates diverse environmental cues, including growth factor signals, energy availability, and nutritional status, to direct cell growth. In plants, TOR is activated by light and sugars and regulates a wide range of cellular processes, including protein synthesis and metabolism. Fatty acid synthesis is key to membrane biogenesis that is required for cell growth.

View Article and Find Full Text PDF

Podocyte injury and proteinuria in glomerular disease are critical indicators of acute kidney injury progression to chronic kidney disease. Renal mitochondrial dysfunction, mediated by intracellular calcium levels and oxidative stress, is a major contributor to podocyte complications. Despite various strategies targeting mitochondria to improve kidney function, effective treatments remain lacking.

View Article and Find Full Text PDF

Background: RNA silencing-based antiviral breeding is a promising strategy for developing virus-resistant plants.

Objectives: This study employed viral sense, anti-sense, and hairpin constructs to induce resistance against beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV).

Materials And Methods: For this purpose, a 120-bp conserved sequence of Rep- and C2-BCTV and a 222-bp conserved sequence of CP-, Reg-, and MP-BCTIV were selected for construct production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!