A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Toxicity of some prevalent organic chemicals to tadpoles and comparison with toxicity to fish based on mode of toxic action. | LitMetric

Toxicity of some prevalent organic chemicals to tadpoles and comparison with toxicity to fish based on mode of toxic action.

Ecotoxicol Environ Saf

State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin 130117, PR China. Electronic address:

Published: January 2019

Although mode of action (MOA) plays a key role in the understanding of the toxic mechanism of chemicals, the MOAs of class-based compounds to tadpoles have not been investigated. To explore the MOAs, acute toxicity (expressed as log 1/LC) to Rana chensinensis tadpoles were determined and molecular descriptors were calculated. Quantitative structure-activity relationship (QSAR) showed that toxicity to tadpoles is closely related to the chemical octanol/water partition coefficient (log K), energy of the lowest unoccupied molecular orbital (E), and number of hydrogen bond donors and acceptors (NH), representing the bio-uptake potential in tadpoles, the electrophilicity and hydrogen bonding capacity with target site(s), respectively. Comparison of the toxicity values between tadpoles and fish revealed that there were no significant differences for the overlapping compounds (average residual = 0.29 between tadpole and fish toxicity) with P values of interspecies correlation substantially less than 0.001. Classification of MOAs for the class-based compounds based on the excess toxicity calculated from toxicity ratio suggested that baseline, less inert compounds and some reactive or specifically-acting compounds share same MOAs between tadpoles and fish. Fish and tadpoles can serve as surrogates for each other in the safety evaluation of organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.09.105DOI Listing

Publication Analysis

Top Keywords

toxicity
8
tadpoles
8
comparison toxicity
8
moas class-based
8
class-based compounds
8
toxicity values
8
tadpoles fish
8
fish
5
compounds
5
toxicity prevalent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!