Hibiscus latent Singapore virus (HLSV) mutant HLSV-22A could not express coat protein (CP) nor infect plants systemically (Niu et al., 2015). In this study, a serine- and threonine-rich motif TTTSTTT at the C-terminus of HLSV CP was found to be involved in virus replication and systemic movement. Deletion the last amino acid residue in HLSV-22A led to a more rapid virus replication, but with delayed systemic movement. When the RNA structure in TTTSTTT motif was altered, while keeping its amino acids unchanged, mutants HLSV-87A-mmSL and HLSV-22A-mmSL showed no change in viral replication. These results indicated that the unique TTTSTTT motif is associated with virus replication and systemic movement. Deletion but not substitution of amino acid(s) at the C-terminus of TTTSTTT motif of HLSV CP with short internal poly(A) track enhanced virus replication, whereas the virus with a longer internal poly(A) tract of 87 A showed delayed systemic movement (147 words).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virol.2018.09.027 | DOI Listing |
Virology
January 2019
Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China 215123. Electronic address:
Hibiscus latent Singapore virus (HLSV) mutant HLSV-22A could not express coat protein (CP) nor infect plants systemically (Niu et al., 2015). In this study, a serine- and threonine-rich motif TTTSTTT at the C-terminus of HLSV CP was found to be involved in virus replication and systemic movement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!