Preparation of Curcuma comosa tablets using liquisolid techniques: In vitro and in vivo evaluation.

Int J Pharm

Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand. Electronic address:

Published: December 2018

Curcuma comosa (C. comosa) is a Thai medicinal herb that provides numerous pharmacologic activities due to its estrogen-like action. This study aimed to investigate the use of liquisolid technique to prepare tablets containing oleoresin-like crude extract of C. comosa, and to improve the dissolution profiles of its major compounds, diarylheptanoids (DAs). Free flowing powders of C. comosa extract were obtained by adsorption onto solid carriers, microcrystalline cellulose, with colloidal silica as coating material. FTIR results ruled out possible interactions between C. comosa extract and excipients. The results indicated that all of liquisolid tablets met the USP requirements. The release of DAs were significantly increased through liquisolid formulations, compared to crude extract. By decreasing the ratio of carrier to coating from 20 to 10, an improvement in dissolution rate was observed. Addition of additives - namely polymer (polyvinyl pyrrolidone) and/or nonvolatile liquid (propylene glycol) affected tablet properties which involved longer disintegration time and lower DA dissolution. Optimized C. comosa liquisolid formulation was prepared in a carrier to coating ratio of 10 without additives. Stability studies showed that physical properties of liquisolid tablet were not affected by aging, but percent remaining and dissolution profiles of DAs were influenced by storage temperature. In vivo pharmacokinetic behavior of the optimized C. comosa liquisolid tablets was investigated following a single oral administration to rabbits. The results proved that the method used for preparation of liquisolid led to C. comosa tablets with low variation in content uniformity and tablet properties, as well as enhanced dissolution behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.10.031DOI Listing

Publication Analysis

Top Keywords

comosa
9
curcuma comosa
8
comosa tablets
8
liquisolid
8
crude extract
8
dissolution profiles
8
comosa extract
8
liquisolid tablets
8
carrier coating
8
tablet properties
8

Similar Publications

Nutrient based classification of Phyllospora comosa biomasses using machine learning algorithms: Towards sustainable valorisation.

Food Res Int

February 2025

Nutrition and Seafood Laboratory (NuSea.Lab), School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, Australia. Electronic address:

Sustainable seaweed value chains necessitate accurate biomass biochemical characterisation that leads to product development, geographical authentications and quality and sustainability assurances. Underutilised yet abundantly available seaweed species require a thorough investigation of biochemical characteristics prior to their valorisation. Abundantly available Australian seaweed species lack such comprehensive investigations within the global seaweed industrial value chains.

View Article and Find Full Text PDF

Using predictive models to identify kelp refuges in marine protected areas for management prioritization.

Ecol Appl

January 2025

Parks Victoria, Marine and Coastal Science and Programs, Melbourne, Victoria, Australia.

Kelp forests serve as the foundation for shallow marine ecosystems in many temperate areas of the world but are under threat from various stressors, including climate change. To better manage these ecosystems now and into the future, understanding the impacts of climate change and identifying potential refuges will help to prioritize management actions. In this study, we use a long-term dataset of observations of kelp percentage cover for two dominant canopy-forming species off the coast of Victoria, Australia: Ecklonia radiata and Phyllospora comosa.

View Article and Find Full Text PDF

Chromosome-scale assembly and annotation of the wild wheat relative Aegilops comosa.

Sci Data

December 2024

State Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.

Wild relatives of wheat are valuable sources for enhancing the genetic diversity of common wheat. Aegilops comosa, an annual diploid species with an MM genome constitution, possesses numerous agronomically valuable traits that can be exploited for wheat improvement. In this study, we report a chromosome-level genome assembly of Ae.

View Article and Find Full Text PDF

Five Australian seaweed species, , , , , and , thrive along the country's shorelines. Some of these seaweeds have recognized health benefits but have not been fully investigated in terms of their bioactive components and mechanisms of action. We employed ultrasonication with 70% methanol to extract phenolic compounds from these seaweeds and investigated a range of bioactivities for these extracts, including anti-inflammatory activity exploring urease inhibition, nitric oxide scavenging activity, protein denaturation inhibition, and protease inhibition.

View Article and Find Full Text PDF

As tertiary gene pools of wheat, Aegilops comosa and Ae. caudata contain many excellent genes/traits and gradually become important and noteworthy wild resources for wheat improvement worldwide. However, the lack of molecular markers and cytological probes with good specificity and high sensitivity limits the development and utilization of Triticum aestivum-Ae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!