Diabetic hearts are susceptible to damage from inappropriate activation of the renin angiotensin system (RAS) and hyperglycemic events both of which contribute to increased oxidant production. Prolonged elevation of oxidants impairs mitochondrial enzyme function, further contributing to metabolic derangement. Nuclear factor erythriod-2-related factor 2 (Nrf2) induces antioxidant genes including those for glutathione (GSH) synthesis following translocation to the nucleus. We hypothesized that an acute elevation in glucose impairs Nrf2-related gene expression in diabetic hearts, while AT1 antagonism would aid in Nrf2-mediated antioxidant production and energy replenishment. We used four groups (n = 6-8/group) of 25-week-old rats: 1) LETO (lean strain-control), 2) type II diabetic OLETF, 3) OLETF + angiotensin receptor blocker (ARB; 10 mg olmesartan/kg/d × 8 wks), and 4) ARBM (4 weeks on ARB, 4 weeks off) to study the effects of acutely elevated glucose on cardiac mitochondrial function and Nrf2 signaling in the diabetic heart. Animals were gavaged with a glucose bolus (2 g/kg) and groups were dissected at T0, T180, and T360 minutes. Nrf2 mRNA was 32% lower in OLETF rats compared to LETO and remained suppressed in response to glucose. LETO Nrf2 mRNA increased 25% at T360 in response to glucose while no changes were observed in diabetic hearts. GCLC and GCLM mRNA decreased in diabetic hearts 33% and 44% respectively and remained suppressed in response to glucose while ARB treatment increased GCLM transcripts 90% at T180. These data illustrate that during T2DM and in response to glucose, cardiac Nrf2's adaptive response to environmental stressors such as glucose is impaired in diabetic hearts and that ARB treatment may aid Nrf2's impaired dynamic response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2018.10.405DOI Listing

Publication Analysis

Top Keywords

diabetic hearts
20
response glucose
16
glucose
9
nrf2-related gene
8
gene expression
8
diabetic
8
type diabetic
8
glucose cardiac
8
nrf2 mrna
8
remained suppressed
8

Similar Publications

Background: Peripheral metabolic health status can reflect and/or contribute to the risk of Alzheimer's disease (AD). Peripheral metabolic health status can be indicated by metabolic health markers, such as inflammatory biomarker glycoprotein acetyls (GlycA) and specific components of lipoproteins (e.g.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Departments of Neurology, Psychiatry, and Epidemiology, Gertrude H. Sergievsky Center, The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.

Background: Cardio and cerebrovascular risk factors (CVRFs) increase the risk of cerebrovascular disease and clinical Alzheimer's Disease (AD), and over 70% of the patients with AD coincident cerebrovascular pathology. We previously found that FMNL2 interacts with a burden score of hypertension, diabetes, heart disease, and body mass index (BMI) by altering the normal astroglial-vascular mechanisms that underly amyloid clearance. Stroke, defined by history of a clinical stroke or brain imaging, is a moderately robust risk factor for AD and dementia.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Background: Sodium glucose transporter 2 inhibitor (SGLT2i) is the latest guideline-directed medical therapy for patients with heart failure, as it has demonstrated favorable cardiovascular outcomes in heart failure (HF) patients with or without diabetes. Furthermore, SGLT2i has effectively improved cognitive function in older adults with diabetes and HF. However, the effects of SGLT2i on cognitive function and brain mitochondrial function in rats with ischemic HF have never been investigated.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

The Jackson Laboratory, Bar Harbor, ME, USA.

Background: Altered lipid profiles and lipid processing genes are associated with Alzheimer's disease (AD). There is a reported genetic interaction between the AD risk gene APOE and cholesterol ester transfer protein (CETP). Mice lack functional CETP which is critical to the balance of circulating lipoproteins; this imparts cardioprotective effects and may make mice resistant to AD.

View Article and Find Full Text PDF

Background: Transactive DNA-binding protein 43 (TDP-43) proteinopathy is associated with neurodegeneration, including LATE and linked to cognitive deterioration. While some research suggests a higher prevalence of TDP-43 in women, no differences have been identified among racial groups. Nonetheless, the influence of gender on cognition within the context of TDP-43 remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!