Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: We sought to construct and evaluate a deep learning (DL) model to diagnose early glaucoma from spectral-domain optical coherence tomography (OCT) images.
Design: Artificial intelligence diagnostic tool development, evaluation, and comparison.
Methods: This multi-institution study included pretraining data of 4316 OCT images (RS3000) from 1371 eyes with open angle glaucoma (OAG) regardless of the stage of glaucoma and 193 normal eyes. Training data included OCT-1000/2000 images from 94 eyes of 94 patients with early OAG (mean deviation > -5.0 dB) and 84 eyes of 84 normal subjects. Testing data included OCT-1000/2000 from 114 eyes of 114 patients with early OAG (mean deviation > -5.0 dB) and 82 eyes of 82 normal subjects. A DL (convolutional neural network) classifier was trained using a pretraining dataset, followed by a second round of training using an independent training dataset. The DL model input features were the 8 × 8 grid macular retinal nerve fiber layer thickness and ganglion cell complex layer thickness from spectral-domain OCT. Diagnostic accuracy was investigated in the testing dataset. For comparison, diagnostic accuracy was also evaluated using the random forests and support vector machine models. The primary outcome measure was the area under the receiver operating characteristic curve (AROC).
Results: The AROC with the DL model was 93.7%. The AROC significantly decreased to between 76.6% and 78.8% without the pretraining process. Significantly smaller AROCs were obtained with random forests and support vector machine models (82.0% and 67.4%, respectively).
Conclusion: A DL model for glaucoma using spectral-domain OCT offers a substantive increase in diagnostic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ajo.2018.10.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!