This study combines a high-performance liquid chromatography-fluorescent detection method (HPLC-FLD) with in-situ cell imaging for the sensitive analysis of glutathione (GSH), cysteine (Cys) and homocysteine (Hcys), using BODIPY®507/545 IA as a labeling reagent. The analytical potential of BODIPY®507/545 IA in cell imaging was deeply explored, concerning fluorescent response, selectivity, cell-permeability, biotoxicity and so on. It is demonstrated that BODIPY®507/545 IA has good biocompatibility and the fluorescence intensity is enhanced remarkably after reacting with thiols. The best derivative condition was obtained in boric acid buffer (0.05 mmol/L, pH 9.5) at 45 °C for 15 min. For chromatographic method, two sensitive methods, HPLC-FLD and capillary electrophoresis-laser-induced fluorescence detection (CE-LIF) were both developed, validated, and compared. The detection limits for the thiols ranged from 5 to 10 nmol/L with HPLC-FLD and 0.5 nmol/L for the CE-LIF method. Finally, HPLC-FLD is adopted to quantify the thiols in HepG2 cell samples after cell imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2018.09.045 | DOI Listing |
PLoS One
December 2024
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.
View Article and Find Full Text PDFCell Rep
December 2024
Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
A significant portion of human cancers utilize a recombination-based pathway, alternative lengthening of telomeres (ALT), to extend telomeres. To gain further insights into this pathway, we developed a high-throughput imaging-based screen named TAILS (telomeric ALT in situ localization screen) to identify genes that either promote or inhibit ALT activity. Screening over 1,000 genes implicated in DNA transactions, TAILS reveals both well-established and putative ALT modulators.
View Article and Find Full Text PDFNeuroradiology
December 2024
Department of Neuroradiology, Istituto Giannina Gaslini, Genoa, Italy.
Various space occupying lesions can arise in the orbit, ranging from developmental anomalies to malignancies, and many of the diseases occurring in children are different from the pathologies in the adult population. As the clinical presentation is frequently nonspecific, radiologic evaluation is essential for lesion detection and characterization as well as patient management. While orbital masses may in some cases involve multiple compartments, a simple compartmental approach is the key for the diagnosis on imaging studies, and MRI is the modality of choice.
View Article and Find Full Text PDFAnn Nucl Med
December 2024
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
Objective: To explore the clinical efficiency of using the sentinel lymph node (SLN) imaging agent Tc-rituximab for lymphoscintigraphy and SLN biopsy (SLNB) in oral squamous cell carcinoma (OSCC) patients.
Methods: A retrospective study was conducted on 23 patients with OSCC who underwent Tc-rituximab lymphoscintigraphy and SLNB. The cohort comprised 16 men (69.
Cell Tissue Bank
December 2024
Division of Shoulder and Elbow Surgery, Rothman Orthopaedic Institute, Philadelphia, PA, USA.
Tissue engineering and cartilage transplantation constitute an evolving field in the treatment of osteoarthritis, with therapeutic and clinical promise shown in autologous chondrocyte implantation. The aim of this systematic review is to explore current clinical trials that utilized autologous chondrocyte transplantation (ACT) and assess its efficacy in the treatment of osteoarthritis. PubMed, Ovid MEDLINE, and Google-Scholar (pages 1-20) were searched up until February 2023.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!