Introduction: Cloning via somatic cell nuclear transfer (SCNT) has been associated with a variety of pathologies, primarily in the placenta, and these alterations may be associated with aberrant epigenetic reprogramming of the donor cell genome. We tested the hypothesis that DNA methylation patterns are not appropriately established after nuclear transfer and that those altered patterns are associated with specific aberrant phenotypes.
Methods: We compared global and specific placental DNA methylation patterns between aberrant and healthy SCNT-produced calves. Foetal cotyledon samples of ten SCNT pregnancies were collected. Global DNA methylation and hydroxymethylation levels were measured using an ELISA-based assay and specific DNA methylation of satellite I, and α-satellite repeat elements were measured using bisulfite PCR.
Results: Our analysis revealed that the SCNT-produced calves, which showed aberrant phenotypes, exhibited a reduced methylation pattern of the satellite I region compared to that of healthy calves. In contrast, global methylation and hydroxymethylation analyses showed higher levels for both cytosine modifications in SCNT-produced female calves with aberrant phenotypes. The satellite I region showed most of the sequences to be hypermethylated in live cloned calves compared with those in deceased calves.
Discussion: Our results suggest that this satellite I region could be used as an epigenetic biomarker for predicting offspring viability. Studies evaluating DNA methylation patterns of this satellite region in the donor cell genome or embryo biopsies could shed light on how to improve the efficiency of SCNT cloning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.placenta.2018.08.007 | DOI Listing |
Clin Epigenetics
December 2024
Hereditary Cancer Group, ONCOBELL Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain.
Background: Lynch syndrome (LS), characterised by an increased risk for cancer, is mainly caused by germline pathogenic variants affecting a mismatch repair gene (MLH1, MSH2, MSH6, PMS2). Occasionally, LS may be caused by constitutional MLH1 epimutation (CME) characterised by soma-wide methylation of one allele of the MLH1 promoter. Most of these are "primary" epimutations, arising de novo without any apparent underlying cis-genetic cause, and are reversible between generations.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China.
Background: The RAR-related orphan receptor alpha (RORA), a circadian clock molecule, is highly associated with anti-oncogenes. In this paper, we defined the precise action and mechanistic basis of RORA in ESCC development under hypoxia.
Methods: Expression analysis was conducted by RT-qPCR, western blotting, immunofluorescence (IF), and immunohistochemistry (IHC) assays.
Sci Rep
December 2024
Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, ShinjukuKu, Tokyo, 1608582, Japan.
Anticancer Res
December 2024
Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, P.R. China;
Background/aim: Solute carrier (SLC) family 15 member 2 (SLC15A2) is an integral member of the SLC family that plays a pivotal role in numerous biological processes, including the regulation of cellular signaling pathways. However, its role in prostate cancer (PCa) remains inadequately elucidated. This study aims to investigate the prognostic significance of SLC15A2 in PCa.
View Article and Find Full Text PDFAnticancer Res
January 2025
Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan;
Background/aim: The five members of the mammalian muscarinic acetylcholine receptor family are encoded by the cholinergic receptor, muscarinic, 1-5 (CHRM1-5) genes. CHRM genes are incriminated in formation of various cancer types, but their roles in head and neck squamous cell carcinoma (HNSCC) are improperly understood. Aberrant epigenetic modifications of specific tumor-suppressor genes and oncogenes are known to promote cancer development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!