Kidney damage induced by sub-chronic fine particulate matter exposure.

Environ Int

Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.

Published: December 2018

AI Article Synopsis

  • About 3 million people die annually from ambient air pollution, highlighting its severe health impacts.
  • Most research on particulate matter (PM) has focused on respiratory and cardiovascular issues, leaving a knowledge gap regarding its effects on kidney function.
  • The study found that sub-chronic PM exposure caused significant kidney damage in rats, especially in hypertensive models, indicating that even low levels of PM can negatively affect renal health.

Article Abstract

According to the WHO, about 3 million people die each year due to ambient air pollution. Most of the in vivo studies on the PM effects have been done on respiratory and cardiovascular tissues. However, little is known about the effects on the tissues involved on xenobiotic removal, such as kidneys. In the present study we assess the harmful effects of sub-chronic exposure to PM on the kidney, by investigating histologic and serum alterations in healthy and hypertensive rat models. Mean PM concentrations during exposures were slightly above the daily WHO standard. Exposed animals showed fibrosis, mesangial expansion, decrease glomerular and tubular lumen volumes in kidneys, with an elevated BUN. Hypertensive animals also exhibited much more severe alterations than healthy animals. We conclude that PM induces minimal or small-scale abnormalities that can be determinant for renal health preservation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2018.10.007DOI Listing

Publication Analysis

Top Keywords

alterations healthy
8
kidney damage
4
damage induced
4
induced sub-chronic
4
sub-chronic fine
4
fine particulate
4
particulate matter
4
matter exposure
4
exposure people
4
people die
4

Similar Publications

Exercising regularly promotes health, but these benefits are complicated by acute inflammation induced by exercise. A potential source of inflammation is cell-free DNA (cfDNA), yet the cellular origins, molecular causes, and immune system interactions of exercise-induced cfDNA are unclear. To study these, 10 healthy individuals were randomized to a 12-wk exercise program of either high-intensity tactical training (HITT) or traditional moderate-intensity training (TRAD).

View Article and Find Full Text PDF

Molecular Determinants of Protein Pathogenicity at the Single-Aggregate Level.

Adv Sci (Weinh)

January 2025

Sheffield Institute for Translational Neuroscience, Division of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.

Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's.

View Article and Find Full Text PDF

Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients share similar symptoms including post-exertional malaise, neurocognitive impairment, and memory loss. The neurocognitive impairment in both conditions might be linked to alterations in the hippocampal subfields. Therefore, this study compared alterations in hippocampal subfields of 17 long COVID, 29 ME/CFS patients, and 15 healthy controls (HC).

View Article and Find Full Text PDF

Aims: This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract.

Methods: This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP.

View Article and Find Full Text PDF

Plasma metabolome reveals altered oxidative stress, inflammation, and amino acid metabolism in dogs with idiopathic epilepsy.

Epilepsia

January 2025

Equine and Companion Animal Nutrition, Department of Morphology, Imaging, Orthopedics, Rehabilitation, and Nutrition, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.

Objective: Idiopathic epilepsy (IE) is the most common chronic neurological disease in dogs and an established natural animal model for human epilepsy types with genetic and unknown etiology. However, the metabolic pathways underlying IE remain largely unknown.

Methods: Plasma samples of healthy dogs (n = 39) and dogs with IE (n = 49) were metabolically profiled (n = 121 known target metabolites) and fingerprinted (n = 1825 untargeted features) using liquid chromatography coupled to mass spectrometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!